Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 829]
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике АВС проведена биссектриса АА1. Докажите, что серединный перпендикуляр к АА1, перпендикуляр к ВС, проходящий через точку А1, и прямая АО (О – центр описанной окружности) пересекаются в одной точке.
На сторонах AB и BC остроугольного треугольника ABC
внешним образом построены квадраты ABC1D1 и A2BCD2.
Докажите, что точка пересечения прямых AD2 и CD1 лежит на высоте BH.
|
|
Сложность: 4 Классы: 8,9,10
|
В некотором лесу расстояние между каждыми двумя деревьями не превосходит разности их высот. Все деревья имеют высоту меньше 100 м.
Докажите, что этот лес можно огородить забором длиной 200 м.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. Рассматриваются прямые l, обладающие следующим свойством: три прямые, симметричные l относительно сторон треугольника, пересекаются в одной точке. Докажите, что все такие прямые проходят через одну точку.
|
|
Сложность: 4 Классы: 9,10,11
|
Диагонали выпуклого четырёхугольника ABCD перпендикулярны. Точки A', B', C', D' – центры описанных окружностей треугольников ABD, BCA, CDB, DAC соответственно. Докажите, что прямые AA', BB', CC', DD' пересекаются в одной точке.
Страница:
<< 32 33 34 35
36 37 38 >> [Всего задач: 829]