ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 257]      



Задача 87147

Темы:   [ Окружности на сфере ]
[ Правильный тетраэдр ]
Сложность: 5-
Классы: 10,11

На сфере, радиус которой равен 2, расположены три окружности радиуса 1, каждая из которых касается двух других. Найдите радиус окружности меньшей, чем данная, которая также расположена на данной сфере и касается каждой из данных окружностей.
Прислать комментарий     Решение


Задача 87152

Темы:   [ Касающиеся сферы ]
[ Правильный тетраэдр ]
Сложность: 5-
Классы: 10,11

Четыре сферы радиуса 1 попарно касаются. Найдите радиус сферы, касающейся всех четырёх сфер.
Прислать комментарий     Решение


Задача 78510

Темы:   [ Окружности на сфере ]
[ Неравенства с трехгранными углами ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 10,11

Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов.

Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.
Прислать комментарий     Решение


Задача 65211

Темы:   [ Сферы (прочее) ]
[ Комбинаторная геометрия (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на этой планете?

Прислать комментарий     Решение

Задача 109737

Темы:   [ Касательные к сферам ]
[ Сфера, описанная около тетраэдра ]
[ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
[ Пересекающиеся сферы ]
Сложность: 5
Классы: 10,11

Сфера с центром в плоскости основания ABC тетраэдра SABC проходит через вершины A , B и C и вторично пересекает ребра SA , SB и SC в точках A1 , B1 и C1 соответственно. Плоскости, касающиеся сферы в точках A1 , B1 и C1 , пересекаются в точке O . Докажите, что O – центр сферы, описанной около тетраэдра SA1B1C1 .
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 257]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .