Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 979]
Докажите, что при любом a имеет место неравенство: 3(1 + a² + a4) ≥ (1 + a + a²)².
|
|
|
Сложность: 2+ Классы: 8,9,10
|
p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство: p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.
|
|
|
Сложность: 2+ Классы: 7,8,9
|
После урока Олег поспорил с Сашей, уверяя, что он знает такое натуральное число m, что число m/3 + m²/2 + m³/6 нецелое. Прав ли Олег? И если прав, то что это за число?
|
|
|
Сложность: 2+ Классы: 7,8,9,10
|
Графики функций у = х² + ах + b и у = х² + сх + d пересекаются в точке с координатами (1, 1). Сравните а5 + d6 и c6 – b5.
|
|
|
Сложность: 2+ Классы: 8,9,10
|
Известно, что x, y и z – целые числа и xy + yz + zx = 1. Докажите, что число (1 + x²)(1 + y²)(1 + z²) является квадратом натурального числа.
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 979]