ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC взяты точка N на стороне AB, а точка M – на стороне AC. Отрезки CN и BM пересекаются в точке O,  AN : NB = 2 : 3,  BO : OM = 5 : 2.
Найдите  CO : ON.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 66691

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
[ Центр масс ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что  $AK = AC,  BK = LC$.  Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.

Прислать комментарий     Решение

Задача 55782

Темы:   [ Гомотетия помогает решить задачу ]
[ Описанные четырехугольники ]
[ Общая касательная к двум окружностям ]
[ Центр масс ]
Сложность: 4
Классы: 8,9

Автор: Купцов Л.

На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём  r1 > r2  и   r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.

Прислать комментарий     Решение

Задача 98376

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Подсчет двумя способами ]
[ Классическая комбинаторика (прочее) ]
[ Барицентрические координаты ]
Сложность: 5
Классы: 8,9,10

Каждая сторона правильного треугольника разбита на n равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на n² маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными прямыми, образуют полоску.
  а) Какое наибольшее число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений, если  n = 10?
  б) Тот же вопрос для  n = 9.

Прислать комментарий     Решение

Задача 102351

Темы:   [ Две пары подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Теоремы Чевы и Менелая ]
[ Центр масс ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC взяты точка N на стороне AB, а точка M – на стороне AC. Отрезки CN и BM пересекаются в точке O,  AN : NB = 2 : 3,  BO : OM = 5 : 2.
Найдите  CO : ON.

Прислать комментарий     Решение

Задача 116356

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки подобия ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Центр масс ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 8,9,10

На сторонах BC, AC и AB треугольника ABC расположены точки A1, B1 и C1 соответственно, причём  BA1 : A1C = CB1 : B1A = AC1 : C1B = 1 : 3.  Найдите площадь треугольника, образованного пересечениями прямых AA1, BB1 и CC1, если известно, что площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .