ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 4204]      



Задача 102716

Тема:   [ Метод координат на плоскости ]
Сложность: 3-
Классы: 8,9

Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.

Прислать комментарий     Решение


Задача 103874

Темы:   [ Перебор случаев ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 6,7

Айрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.

Прислать комментарий     Решение


Задача 21982

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 3-
Классы: 6,7,8

Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.

Прислать комментарий     Решение


Задача 30433

Темы:   [ Полуинварианты ]
[ Четность и нечетность ]
[ Игры-шутки ]
Сложность: 3-
Классы: 6,7,8

Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

Прислать комментарий     Решение

Задача 30750

Тема:   [ Инварианты ]
Сложность: 3-
Классы: 6,7,8

В алфавите языка племени УЫУ всего две буквы: У и Ы. Известно, что смысл слова не изменится
  если из слова выкинуть стоящие рядом буквы УЫ и
  при добавлении в любое место слова буквосочетания ЫУ или УУЫЫ.
Можно ли утверждать, что слова УЫЫ и ЫУУ имеют одинаковый смысл?

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 4204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .