Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?

Вниз   Решение


Автор: Ботин Д.А.

Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.

ВверхВниз   Решение


Докажите, что sin< при 0<x< .

ВверхВниз   Решение


Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

ВверхВниз   Решение


Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника, принадлежащую только одному параллелограмму, назовем хорошей. Докажите, что хороших вершин не менее трех.

ВверхВниз   Решение


Для одного из предприятий-монополистов зависимость объёма спроса на продукцию q (единиц в месяц) от её цены p (тыс. руб.) задаётся формулой: q = 150-15p . Определите максимальный уровень цены p (в тыс. руб.), при котором значение выручки предприятия за месяц r = q· p составит не менее 360 тыс. руб.

ВверхВниз   Решение


Решите уравнение cos(cos(cos(cos x)))= sin(sin(sin(sin x))) .

ВверхВниз   Решение


Решите уравнение:

ВверхВниз   Решение


Угол, образованный лучами  y = x  и  y = 2x  при  x ≥ 0,  высекает на параболе  y = x² + px + q  две дуги. Эти дуги спроектированы на ось Ox. Докажите, что проекция левой дуги на 1 короче проекции правой.

ВверхВниз   Решение


Автор: Ботин Д.А.

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

ВверхВниз   Решение


В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся? Ответ обоснуйте.

ВверхВниз   Решение


Окружность вписана в равнобедренную трапецию ABCD с основаниями  BC = a  и  AD = b.  Точка H – проекция вершины B на AD, точка P – проекция точки H на AB, точка F лежит на отрезке BH, причём  FH = AH.  Найдите AB, BH, BP, DF и расположите найденные величины по возрастанию.

ВверхВниз   Решение


Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.

ВверхВниз   Решение


Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур задаётся выражением T(t) = T0+at+bt2 , где T0 = 1160 К, a = 34 К/мин, b = -0,2 К/ мин2 . Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах) через какое наибольшее время после начала работы нужно отключать прибор.

ВверхВниз   Решение


Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ?

ВверхВниз   Решение


Про углы треугольника ABC известно, что      и    .   Найдите величину угла C.

ВверхВниз   Решение


Решите систему уравнений:
    xy(x + y) = 30
    x³ + y³ = 35.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 107843

Темы:   [ Алгебраические неравенства (прочее) ]
[ Замена переменных ]
[ Тождественные преобразования ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 8,9,10

Положительные числа a, b и c таковы, что  abc = 1.  Докажите неравенство

+ + ≤ 1.

Прислать комментарий     Решение

Задача 111769

Темы:   [ Неравенство Коши ]
[ Замена переменных ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Для положительных чисел x1, x2, ..., xn докажите неравенство  

Прислать комментарий     Решение

Задача 61339

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Тригонометрические замены ]
Сложность: 5+
Классы: 10,11

Тройки чисел (xn, yn, zn) (n $ \geqslant$ 1) строятся по правилу: x1 = 2, y1 = 4, z1 = 6/7,

xn + 1 = $\displaystyle {\frac{2x_n}{x_n^2-1}}$,    yn + 1 = $\displaystyle {\frac{2y_n}{y_n^2-1}}$,    zn + 1 = $\displaystyle {\frac{2z_n}{z_n^2-1}}$,    (n $\displaystyle \geqslant$ 1).


а) Докажите, что указанный процесс построения троек может быть неограниченно продолжен.
б) Может ли на некотором шаге получится тройка чисел (xn, yn, zn), для которой xn + yn + zn = 0?
Прислать комментарий     Решение

Задача 102828

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Замена переменных ]
Сложность: 3
Классы: 7,8

Решите систему уравнений:
    xy(x + y) = 30
    x³ + y³ = 35.

Прислать комментарий     Решение

Задача 108984

Темы:   [ Иррациональные уравнения ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Замена переменных (прочее) ]
Сложность: 4+
Классы: 9,10

Найти все действительные решения уравнения

36/+4/=28-4-.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .