Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Определите, на какую наибольшую натуральную степень числа 2007 делится 2007!

Вниз   Решение


Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что  OM = KN.

ВверхВниз   Решение


Около треугольника ABC описана окружность с центром O. Вторая окружность, проходящая через точки A, B, O, касается прямой AC в точке A.
Докажите, что  AB = AC.

ВверхВниз   Решение


Вписанная в треугольник ABC окружность касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что AC=1 , а углы MKN и ABC равны соответственно 45o и 30o . Найдите радиус окружности.

ВверхВниз   Решение


Вписанная в треугольник ABC окружность радиуса 1 касается его сторон AB , BC и AC соответственно в точках K , M и N . Известно, что MKN = ABC = 45o . Найдите стороны треугольника ABC .

ВверхВниз   Решение


Можно ли расставить по кругу 1995 различных натуральных чисел так, чтобы для каждых двух соседних чисел отношение большего из них к меньшему было простым числом?

ВверхВниз   Решение


Автор: Фольклор

В прямоугольнике АВСD точка Р – середина стороны АВ, а точка Q – основание перпендикуляра, опушенного из вершины С на PD.
Докажите, что  BQ = BC.

ВверхВниз   Решение


Вычислите суммы:
  а)  

  б)  

ВверхВниз   Решение


На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19  (6·1 + 13 = 19).  Какое число можно будет прочитать на доске через час?

ВверхВниз   Решение


Дан треугольник ABC . На его сторонах AB и BC построены внешним образом квадраты ABMN и BCPQ . Докажите, что центры этих квадратов и середины отрезков MQ и AC образуют квадрат.

ВверхВниз   Решение


В треугольнике ABC известно, что AB = BC, $ \angle$BAC = 45o. Прямая MN пересекает сторону AC в точке M, а сторону BC — в точке N, AM = 2 . MC, $ \angle$NMC = 60o. Найдите отношение площади треугольника MNC к площади четырёхугольника ABNM.

ВверхВниз   Решение


На складах двух магазинов хранится пшено: на первом складе на 16 тонн больше, чем на втором. Каждую ночь ровно в полночь владелец каждого магазина ворует у своего конкурента четверть имеющегося на его складе пшена и перетаскивает на свой склад. Через 10 ночей воришек поймали. На каком складе в момент их поимки было больше пшена и на сколько?

ВверхВниз   Решение


Даны две точки и окружность. С помощью циркуля и линейки проведите через данные точки две секущие, хорды которых внутри данной окружности были бы равны и пересекались бы под данным углом α .

ВверхВниз   Решение


С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат соответственно на трёх данных концентрических окружностях.

ВверхВниз   Решение


На шахматной доске 8×8 расставлено наибольшее возможное число слонов так, что никакие два слона не угрожают друг другу.
Доказать, что число всех таких расстановок есть точный квадрат.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



Задача 78809

Темы:   [ Поворот помогает решить задачу ]
[ Вспомогательная окружность ]
[ Выпуклые многоугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4+
Классы: 9,10,11

На плоскости лежат две одинаковые фигуры, имеющие форму буквы ``Г'' . Концы коротких палочек у букв ``Г'' обозначим через A и A'. Длинные палочки разделены на n равных частей точками a1, ..., an - 1; a'1, ..., a'n - 1 (точки деления нумеруются от концов длинных палочек). Проводятся прямые Aa1, Aa2, ..., Aan - 1; A'a$\scriptstyle \prime$1, A'a'2, ..., A'a'n - 1. Точку пересечения прямых Aa1 и A'a$\scriptstyle \prime$1 обозначим через X1, прямых Aa2 и A'a$\scriptstyle \prime$2 — через X2 и т.д. Доказать, что точки X1, X2, ..., Xn - 1 образуют выпуклый многоугольник.

Примечание Problems.Ru: Предполагается, что данные фигуры совмещаются движением, сохраняющим ориентацию.
Прислать комментарий     Решение


Задача 79267

Темы:   [ Поворот помогает решить задачу ]
[ Связь величины угла с длиной дуги и хорды ]
[ Ломаные ]
[ Неравенство треугольника (прочее) ]
Сложность: 5-
Классы: 9,10,11

На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной линии, он пробежал 30 километров.
Доказать, что сумма всех углов, на которые лев поворачивал, не меньше 2998 радиан.

Прислать комментарий     Решение

Задача 55719

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

Прислать комментарий     Решение


Задача 102883

Темы:   [ Правило произведения ]
[ Поворот помогает решить задачу ]
[ Шахматная раскраска ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3-
Классы: 7,8

На шахматной доске 8×8 расставлено наибольшее возможное число слонов так, что никакие два слона не угрожают друг другу.
Доказать, что число всех таких расстановок есть точный квадрат.

Прислать комментарий     Решение

Задача 116066

Темы:   [ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательная окружность ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Два равносторонних треугольника ABC и CDE имеют общую вершину (см. рис). Найдите угол между прямыми AD и BE.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .