ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри квадрата ABCD расположен квадрат KMXY. Докажите, что середины отрезков AK, BM, CX и DY также являются вершинами квадрата.

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 330]      



Задача 57069

Темы:   [ Правильные многоугольники ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 9

На сторонах AB, BC, CD и DA квадрата ABCD построены внутренним образом правильные треугольники ABK, BCL, CDM и DAN. Докажите, что середины сторон этих треугольников (не являющихся сторонами квадрата) и середины отрезков KL, LM, MN и NK образуют правильный двенадцатиугольник.

Прислать комментарий     Решение

Задача 66221

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Средняя линия треугольника ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 9,10

Автор: Тригуб А.

Пусть L – точка пересечения симедиан остроугольного треугольника ABC, а BH – его высота. Известно, что  ∠ALH = 180° – 2∠A.
Докажите, что  ∠CLH = 180° – 2∠C.

Прислать комментарий     Решение

Задача 66240

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 9,10

В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

Прислать комментарий     Решение

Задача 102452

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность. Известно, что AC $ \perp$ BD. Найдите длину BC, если расстояние от центра окружности до стороны AD равно 2.

Прислать комментарий     Решение


Задача 103739

Темы:   [ Перенос помогает решить задачу ]
[ Средняя линия треугольника ]
[ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8

Внутри квадрата ABCD расположен квадрат KMXY. Докажите, что середины отрезков AK, BM, CX и DY также являются вершинами квадрата.
Прислать комментарий     Решение


Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .