ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан угольник, у которого есть ровно один угол в 19°, а про остальные углы ничего не известно. Можно ли с его помощью отложить угол в 75°?

   Решение

Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 484]      



Задача 103957

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 7,8

Дан угольник, у которого есть ровно один угол в 19°, а про остальные углы ничего не известно. Можно ли с его помощью отложить угол в 75°?

Прислать комментарий     Решение

Задача 108024

Темы:   [ Перегруппировка площадей ]
[ Построения ]
[ Медиана делит площадь пополам ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

Дана выпуклая фигура, ограниченная дугой A окружности и ломаной ABC так, что дуга и ломаная лежат по разные стороны от хорды AC.
Через середину дуги AC проведите прямую, делящую площадь фигуры пополам.

Прислать комментарий     Решение

Задача 116408

Темы:   [ Связь величины угла с длиной дуги и хорды ]
[ Построения одним циркулем ]
Сложность: 3
Классы: 8,9

Нарисован угол, и ещё имеется только циркуль.
  а) Какое наименьшее число окружностей надо провести, чтобы наверняка определить, является ли данный угол острым?
  б) Как определить, равен ли данный угол 31° (разрешается проводить сколько угодно окружностей)?

Прислать комментарий     Решение

Задача 55143

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Построения с помощью вычислений ]
Сложность: 3
Классы: 8,9

Как в треугольнике ABC провести ломаную BDEFG (см. рисунок), чтобы все пять полученных треугольников имели одинаковые площади?

Прислать комментарий     Решение


Задача 35209

Темы:   [ Длины сторон (неравенства) ]
[ Построения (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9,10

На плоскости нарисован острый угол с вершиной в точке O и точка P внутри него. Постройте точки A и B на сторонах угла так, чтобы треугольник PAB имел наименьший возможный периметр.
Прислать комментарий     Решение


Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .