ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Приведите пример многочлена P(x) степени 2001, для которого  P(x) + P(1 – x) ≡ 1.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 965]      



Задача 98217

Темы:   [ Исследование квадратного трехчлена ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 9,10

Последовательность натуральных чисел  a1, a2, ..., an, ...  такова, что для каждого n уравнение  an+2x² + an+1x + an = 0  имеет действительный корень. Может ли число членов этой последовательности быть
  а) равным 10;
  б) бесконечным?

Прислать комментарий     Решение

Задача 98242

Темы:   [ Квадратные уравнения. Формула корней ]
[ Иррациональные неравенства ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  x² + px + q = 0  изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?

Прислать комментарий     Решение

Задача 98450

Темы:   [ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Докажите, что существует бесконечно много нечётных n, для которых число  2n + n  – составное.

Прислать комментарий     Решение

Задача 105110

Темы:   [ Многочлены (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Свойства симметрии и центра симметрии ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Приведите пример многочлена P(x) степени 2001, для которого  P(x) + P(1 – x) ≡ 1.

Прислать комментарий     Решение

Задача 105206

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 8,9,10

В выражении  (x4 + x³ – 3x² + x + 2)2006  раскрыли скобки и привели подобные слагаемые.
Докажите, что при некоторой степени переменной x получился отрицательный коэффициент.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .