Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Точка O лежит на отрезке AB, причём AO = 13, OB = 7. С центром в точке O проведена окружность радиуса 5. Из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, описанной вокруг треугольника AMB.

Вниз   Решение


Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел.

ВверхВниз   Решение


Пусть M и N — середины сторон CD и DE правильного шестиугольника ABCDEF, P — точка пересечения отрезков AM и BN.
а) Найдите величину угла между прямыми AM и BN.
б) Докажите, что SABP = SMDNP.

ВверхВниз   Решение


Числовая последовательность  A1, A2, ..., An, ...  определена равенствами   A1 = 1,   A2 = – 1,   An = – An–1 – 2An–2   (n ≥ 3).
Докажите, что при любом натуральном n число     является полным квадратом.

ВверхВниз   Решение


Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn})  разрешается получать последовательности  {bn + cn},
{bn – cn},  {bncn}  и  {bn/cn}  (если все члены последовательности {cn} отличны от 0). Кроме того, из любой имеющейся последовательности можно получить новую, вычеркнув несколько начальных членов. Сначала есть только последовательность {an}. Можно ли получить из неё описанными выше операциями последовательность {n}, то есть 1, 2, 3, 4, ..., если
  а)  an = n²;

  б)  

  в)  

ВверхВниз   Решение


Делится ли  222555 + 555222  на 7?

ВверхВниз   Решение


В классе 30 учеников. Докажите, что вероятность того, что у каких-нибудь двух учеников совпадают дни рождения, составляет больше 50%.

ВверхВниз   Решение


Используя результат задачи 61403, докажите неравенства:
  а)     неравенство Коши);
  б)  

  в)     где  b1 + ... + bn = 1.
  Значения переменных считаются положительными.

ВверхВниз   Решение


С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD, в котором  ∠DAB = 90°.  Пусть M – середина стороны BC. Оказалось. что  ∠ADC = ∠BAM.
Докажите, что  ∠ADB = ∠CAM.

ВверхВниз   Решение


Точки A1, B1, C1 – середины сторон соответственно BC, AC, AB треугольника ABC. Известно, что A1A и B1B – биссектрисы углов треугольника A1B1C1. Найдите углы треугольника ABC.

ВверхВниз   Решение


Существует ли такое натуральное число n, что числа n, n², n³ начинаются на одну и ту же цифру, отличную от единицы?

ВверхВниз   Решение


Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AXXB, BYYC, CZZD, DTTA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 375]      



Задача 55154

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 2+
Классы: 8,9

Докажите, что сумма высот треугольника меньше его периметра.

Прислать комментарий     Решение


Задача 55157

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3-
Классы: 8,9

Докажите, что площадь треугольника ABC не превосходит $ {\frac{1}{2}}$AB . AC.

Прислать комментарий     Решение


Задача 55258

Темы:   [ Неравенства для углов треугольника ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Определите вид треугольника (относительно его углов), если даны три стороны (или их отношения):

1) 2, 3, 4;

2) 3, 4, 5;

3) 4, 5, 6;

4) 10, 15, 18;

5) 68, 119, 170.

Прислать комментарий     Решение


Задача 107701

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3-
Классы: 7,8,9

Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AXXB, BYYC, CZZD, DTTA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность.
Прислать комментарий     Решение


Задача 54010

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3-
Классы: 8,9

Докажите, что высота неравнобедренного прямоугольного треугольника, проведённая из вершины прямого угла, меньше половины гипотенузы.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .