Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный?

Вниз   Решение


Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

ВверхВниз   Решение


Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных?

ВверхВниз   Решение


Автор: Фольклор

Две окружности пересекаются в точках P и Q. Прямая, пересекающая отрезок PQ, последовательно пересекает эти окружности в точках A, B, C и D.
Докажите, что  ∠APB = ∠CQD.

ВверхВниз   Решение



Через середину ребра AB куба ABCDA1B1C1D1 с ребром, равным a, проведена плоскость, параллельная прямым BD1 и A1C1.

1) В каком отношении эта плоскость делит диагональ DB1?

2) Найдите площадь полученного сечения.

ВверхВниз   Решение


Даны многочлены P(x), Q(x). Известно, что для некоторого многочлена R(x, y) выполняется равенство  P(x) – P(y) = R(x, y)(Q(x) – Q(y)).
Докажите, что существует такой многочлен S(x), что  P(x) = S(Q(x)).

ВверхВниз   Решение


Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
    a sin x + b cos x + c = 0,   2a tg x + b ctg x + 2c = 0
имеет решение.

ВверхВниз   Решение


Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .

ВверхВниз   Решение


Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?

ВверхВниз   Решение


Найдите все такие простые числа p, что число  p² + 11  имеет ровно шесть различных делителей (включая единицу и само число).

ВверхВниз   Решение


На ребре единичного правильного тетраэдра взята точка, которая делит это ребро в отношении 1:2. Через эту точку провежены две плоскости, параллельные двум граням тетраэдра. Эти плоскости отсекают от тетраэдра две треугольные пирамиды. Найдите объём оставшейся части тетраэдра.

ВверхВниз   Решение


Внутри квадрата ABCD взята точка E. Пусть ET – высота треугольника ABE, K – точка пересечения прямых DT и AE, M – точка пересечения прямых CT и BE. Докажите, что отрезок KM – сторона квадрата, вписанного в треугольник ABE.

ВверхВниз   Решение


Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что  AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника  (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 88]      



Задача 111339

Темы:   [ Правильные многоугольники ]
[ Шестиугольники ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 6,8,9,10

Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?

Прислать комментарий     Решение

Задача 55239

Темы:   [ Против большей стороны лежит больший угол ]
[ Шестиугольники ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

В некотором царстве, в некотором государстве есть несколько городов, причём расстояния между ними все попарно различны. В одно прекрасное утро из каждого города вылетает по одному самолету, который приземляется в ближайшем соседнем городе. Может ли в одном городе приземлиться более пяти самолетов?

Прислать комментарий     Решение

Задача 58048

Темы:   [ Наименьший или наибольший угол ]
[ Шестиугольники ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

В некоторой стране 100 аэродромов, причём все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром.
Докажите, что ни на один аэродром не может прилететь больше пяти самолетов.

Прислать комментарий     Решение

Задача 107777

Темы:   [ Правильные многоугольники ]
[ Шестиугольники ]
[ Вспомогательные равные треугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9

Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что  AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника  (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).

Прислать комментарий     Решение

Задача 115317

Темы:   [ Вспомогательные равные треугольники ]
[ Шестиугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В выпуклом шестиугольнике ABCDEF диагонали AD, BE и CF равны. Пусть P – точка пересечения диагналей AD и CF, R – точка пересечения диагоналей BE и CF, Q – точка пересечения диагоналей AD и BE. Известно, что  AP = PF,  BR = CR  и  DQ = EQ.  Докажите, что точки A, B, C, D, E и F лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .