Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 136]
|
|
Сложность: 5 Классы: 10,11
|
а) Вписанная окружность треугольника ABC касается сторон AC и AB в точках B0 и C0 соответственно. Биссектрисы углов B и C треугольника ABC пересекают серединный перпендикуляр к биссектрисе AL в точках Q и P соответственно. Докажите, что прямые PC0 и QB0 пересекаются на прямой BC.
б) В треугольнике ABC провели биссектрису AL. Точки O1 и O2 – центры описанных окружностей треугольников ABL и ACL соответственно. Точки B1 и C1 – проекции вершин C и B на биссектрисы углов B и C соответственно. Докажите, что прямые O1C1 и O2B1 пересекаются на прямой BC.
в) Докажите, что точки, полученные в пп. а) и б), совпадают.
|
|
Сложность: 5 Классы: 10,11
|
Окружности $\alpha$, $\beta$, $\gamma$ касаются друг друга внешним образом и касаются изнутри окружности $\Omega$ в точках $A_1$, $B_1$, $C_1$ соответственно. Общая внутренняя касательная к $\alpha$ и $\beta$ пересекает не содержащую $C_1$ дугу $A_1B_1$ в точке $C_2$. Точки $A_2$, $B_2$ определяются аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
Докажите, что три прямые, проведённые через середины сторон треугольника параллельно биссектрисам противолежащих углов, пересекаются в одной точке.
|
|
Сложность: 3 Классы: 8,9,10
|
Через вершины треугольника $ABC$ проведены параллельные прямые $l_a$, $l_b$, $l_c$. Пусть прямая $a$ симметрична высоте $AH_a$ относительно $l_a$. Аналогично определяем $b$, $c$. Докажите, что $a$, $b$, $c$ пересекаются в одной точке.
|
|
Сложность: 3+ Классы: 9,10,11
|
В неравнобедренном прямоугольном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно. Докажите, что прямые AHc, CHa пересекаются на средней линии треугольника ABC.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 136]