ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырёхугольник разделен диагоналями на четыре треугольника. Площади трёх из них равны 10, 20 и 30, и каждая меньше площади четвёртого треугольника. Найдите площадь данного четырёхугольника.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 460]      



Задача 97764

Темы:   [ Отношения площадей (прочее) ]
[ Перегруппировка площадей ]
[ Арифметическая прогрессия ]
[ Числовые таблицы и их свойства ]
Сложность: 4
Классы: 9,10,11

Автор: Анджанс А.

  Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
  Доказать, что сумма площадей выбранных четырёхугольников равна  1/k SABCD.

Прислать комментарий     Решение

Задача 108170

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4
Классы: 8,9

На сторонах AB , BC и AC треугольника ABC взяты точки C' , A' и B' соответственно. Докажите, что площадь треугольника A'B'C' равна

,

где R – радиус описанной окружности треугольника ABC .
Прислать комментарий     Решение

Задача 108481

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9

Четырёхугольник разделен диагоналями на четыре треугольника. Площади трёх из них равны 10, 20 и 30, и каждая меньше площади четвёртого треугольника. Найдите площадь данного четырёхугольника.
Прислать комментарий     Решение


Задача 111575

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

В треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ?
Прислать комментарий     Решение


Задача 111656

Темы:   [ Отношения площадей (прочее) ]
[ Перегруппировка площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9

На стороне AB четырёхугольника ABCD взяты точки A1 и B1, а на стороне CD – точки C1 и D1, причём  AA1 = BB1 = pAB  и  CC1 = DD1 = pCD,  где
p < ½.  Докажите, что  SA1B1C1D1 = (1 – 2p)SABCD.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .