Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Два правильных многоугольника с периметрами a и b описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.

Вниз   Решение


Две вершины квадрата расположены на гипотенузе равнобедренного прямоугольного треугольника, а две другие – на катетах.
Найдите сторону квадрата, если гипотенуза равна a.

ВверхВниз   Решение


Докажите, что площадь параллелограмма произведению двух его соседних сторон на синус угла между ними, т.е.

S = ab sin$\displaystyle \gamma$,

где a и b — соседние стороны параллелограмма, $ \gamma$ — угол между ними.

ВверхВниз   Решение


В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
  а) за 5 или менее;
  б) за 4 или менее;
  в) за 3 или менее таких перегибания?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 20]      



Задача 66674

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Три окружности пересекаются в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Mahdi Etesami Fard

Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.
Прислать комментарий     Решение


Задача 111475

Темы:   [ Три окружности одного радиуса ]
[ Три окружности пересекаются в одной точке ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 8,9

Три равные окружности радиуса R пересекаются в точке M . Пусть A , B и C – три другие точки их попарного пересечения. Докажите, что: а) радиус окружности, описанной около треугольника ABC , равен R ; б) M – точка пересечения высот треугольника ABC .
Прислать комментарий     Решение


Задача 64988

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Три окружности пересекаются в одной точке ]
[ Ортоцентр и ортотреугольник ]
[ Вспомогательные подобные треугольники ]
[ Радикальная ось ]
Сложность: 4+
Классы: 10,11

В остроугольном треугольнике ABC  O – центр описанной окружности, A1, B1, C1 – основания высот. На прямых OA1, OB1, OC1 нашли такие точки A', B', C' соответственно, что четырёхугольники AOBC', BOCA', COAB' вписанные. Докажите, что описанные окружности треугольников AA1A', BB1B', CC1C', имеют общую точку.

Прислать комментарий     Решение

Задача 65235

Темы:   [ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Точка Микеля ]
Сложность: 5-
Классы: 10,11

В остроугольном неравнобедренном треугольнике ABC высоты CC1 и BB1 пересекают прямую, проходящую через вершину A и параллельную прямой BC, в точках P и Q. Пусть A0 – середина стороны BC, а AA1 – высота. Прямые A0C1 и A0B1 пересекают прямую PQ в точках K и L. Докажите, что описанные окружности треугольников PQA1, KLA0, A1B1C1 и окружность с диаметром AA1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108894

Темы:   [ Точка Микеля ]
[ Три окружности пересекаются в одной точке ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .