Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Равносторонний треугольник ABC со стороной 3 вписан в окружность. Точка D лежит на окружности, причём хорда AD равна . Найдите хорды BD и CD .

Вниз   Решение


2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.

ВверхВниз   Решение


Первая окружность с центром в точке A касается сторон угла KOL в точках K и L. Вторая окружность с центром в точке B касается отрезка OK, луча LK и продолжения стороны угла OL за точку O. Известно, что отношение радиуса первой окружности к радиусу второй окружности равно $ {\frac{15}{16}}$. Найдите отношение отрезков OB и OA.

ВверхВниз   Решение


В треугольнике ABC окружность, проходящая через вершины A и B, касается прямой BC, а окружность, проходящая через вершины B и C, касается прямой AB и второй раз пересекает первую окружность в точке K. Пусть O – центр описанной окружности треугольника ABC. Докажите, что угол BKO – прямой.

ВверхВниз   Решение


Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами. Докажите, что произведение этих чисел предвтавляет собой точный квадрат.

ВверхВниз   Решение


В точках A и B пересечения двух окружностей касательные к этим окружностям взаимно перпендикулярны. Пусть M — произвольная точка на одной из окружностей, лежащая внутри другой окружности. Продолжим отрезки AM и BM до пересечения в точках X и Y с окружностью, содержащей M внутри себя. Докажите, что XY — диаметр этой окружности.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум данным сторонам, если известно, что медианы, проведённые к этим сторонам, пересекаются под прямым углом.

ВверхВниз   Решение


Пусть A0 – середина стороны BC треугольника ABC , а A' – точка касания с этой стороной вписанной окружности. Построим окружность с центром в точке A0 и проходящую через A' . На других сторонах построим аналогичные окружности. Докажите, что если окружность касается описанной окружности в точке дуги BC , не содержащей A , то ещё одна из построенных окружностей касается описанной.

ВверхВниз   Решение


Основания трапеции равны 17 и 25. Найдите длину отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


Диагонали четырёхугольника $ABCD$ пересекаются в точке $P$, причём $S^2_{\Delta ABP} + S^2_{\Delta CDP} = S^2_{\Delta BCP} + S^2_{\Delta ADP}$. Докажите, что $P$ — середина одной из диагоналей.

ВверхВниз   Решение


Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K, L – середина AC, а точка M на отрезке AB такова, что  ∠AKM = ∠CKL.  Докажите, что  MA = MB.

Вверх   Решение

Задачи

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 1282]      



Задача 108235

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 8,9

Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AB = BC)  на стороне AB выбрана точка D, и вокруг треугольников ADC и BDC описаны окружности S1 и S2 соответственно. Касательная, проведённая к S1 в точке D, пересекает второй раз окружность S2 в точке M. Докажите, что  BM || AC.

Прислать комментарий     Решение

Задача 108461

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный угол равен половине центрального ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC точка O является центром описанной окружности. Через вершину B проведена прямая, перпендикулярная AO, пересекающая прямую AC в точке K, а через вершину C проведена прямая, также перпендикулярная AO, пересекающая сторону AB в точке M. Найдите BC, если  BK = a,  CM = b.

Прислать комментарий     Решение

Задача 108903

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K, L – середина AC, а точка M на отрезке AB такова, что  ∠AKM = ∠CKL.  Докажите, что  MA = MB.

Прислать комментарий     Решение

Задача 110879

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что D лежит на отрезке AC. Найдите AB, CD и радиус окружности, если  BC = 4,  BD = 3,  ∠BAC = arccos ⅓.

Прислать комментарий     Решение

Задача 110880

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что точка C лежит на отрезке AD. Найдите AC, BC и радиус окружности, если  

Прислать комментарий     Решение

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .