|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На сторонах AB, AC, BC равностороннего треугольника ABC, сторона которого равна 2, выбрали точки C1, B1, A1 соответственно. Отрезки AB и CD пересекаются в точке O. Докажите равенство треугольников ACO и DBO, если известно, что ∠ACO = ∠DBO и BO = OC.
В треугольник ABC вписана окружность, которая касается
сторон AB, BC, AC соответственно в точках M, D, N. Найдите
MD, если известно, что NA = 2, NC = 3,
Дана квадратная таблица 4×4, в каждой клетке которой стоит знак "+" или "–" : Можно ли через несколько ходов получить таблицу из одних плюсов? На плоскости дан квадрат со стороной a . Найти объём тела, состоящего из всех точек пространства, расстояние от которых до части плоскости, ограниченной квадратом, не больше a . |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]
На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|