Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .

Вниз   Решение


Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична.

ВверхВниз   Решение


B треугольнике ABC угол A равен 120°. Докажите, что расстояние от центра описанной окружности до ортоцентра равно  AB + AC.

ВверхВниз   Решение


Автор: Ивлев Б.М.

Пусть ABC – остроугольный треугольник, CC1 – его биссектриса, O – центр описанной окружности. Точка пересечения прямой OC1 с перпендикуляром, опущенным из вершины C на сторону AB, лежит на описанной окружности Ω треугольника AOB. Найдите угол C.

ВверхВниз   Решение


Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся равны c . Найдите косинус угла между рёбрами, равными a .

ВверхВниз   Решение


Имеются две параллельные прямые p1 и p2. Точки A и B лежат на p1, а C – на p2. Будем перемещать отрезок BC параллельно самому себе и рассмотрим все треугольники ABC, полученные таким образом. Найдите геометрическое место точек, являющихся в этих треугольниках:
  а) точками пересечения высот;
  б) точками пересечения медиан;
  в) центрами описанных окружностей.

ВверхВниз   Решение


С помощью циркуля и линейки постройте равносторонний треугольник, вершины которого лежат соответственно на трёх данных концентрических окружностях.

ВверхВниз   Решение


Биссектриса угла A треугольника ABC пересекает серединный перпендикуляр к стороне AB в точке X, серединный перпендикуляр к стороне AC – в точке Y, а описанную окружность треугольника – в точке Z. Точки A, X, Y и Z лежат на биссектрисе в порядке перечисления. Докажите, что  AX = YZ.

ВверхВниз   Решение


Автор: Фольклор

В треугольнике ABC медиана, проведённая из вершины A к стороне BC, в четыре раза меньше стороны AB и образует с ней угол 60°. Найдите угол А.

ВверхВниз   Решение


Найдите периметр треугольника KLM, если известны координаты его вершин  K(–4, –3),  L(2, 5)  и точки  P(5, 1),  являющейся серединой стороны LM.

ВверхВниз   Решение


Угол B при вершине равнобедренного треугольника ABC равен 120°. Из вершины B выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания AC в точках P и Q, попали на боковые стороны в точки M и N (см. рис.). Докажите, что площадь треугольника PBQ равна сумме площадей треугольников AMP и CNQ.

ВверхВниз   Решение


На диагонали AC нижней грани единичного куба ABCDA1B1C1D1 отложен отрезок AE длины l . На диагонали B1D1 его верхней грани отложен отрезок B1F длиной ml . При каком l (и фиксированном m>0 ) длина отрезка EF будет наименьшей?

ВверхВниз   Решение


Автор: Сонкин М.

Биссектрисы AD и CE треугольника ABC пересекаются в точке O. Прямая, симметричная AB относительно CE, пересекает прямую, симметричную BC относительно AD, в точке K. Докажите, что  KOAC.

ВверхВниз   Решение


В трапеции ABCD угол ADC прямой, угол BAD равен arctg 3 и AD=CD . Квадрат KLMN расположен в пространстве так, что его центр совпадает с серединой отрезка AD . Точка D лежит на стороне LK и DL < DK , точка M равноудалена от точек C и D . Расстояние от точки L до ближайшей к ней точки трапеции ABCD равно 2, а расстояние от точки N до ближайшей к ней точки трапеции ABCD равно 3. Найдите площадь трапеции ABCD и расстояние от точки M до плоскости ABCD .

ВверхВниз   Решение


Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  AEF, BGH, CIJ, DKL  (EF, GH, IJ, KL – дуги окружности). Докажите, что
  а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
  б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.

ВверхВниз   Решение


Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
    a sin x + b cos x + c = 0,   2a tg x + b ctg x + 2c = 0
имеет решение.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 65480

Темы:   [ Тригонометрические уравнения ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 4-
Классы: 10,11

Решите уравнение  2 sin πx/2 – 2 cos πx = x5 + 10x – 54.

Прислать комментарий     Решение

Задача 109177

Темы:   [ Тригонометрические уравнения ]
[ Методы решения задач с параметром ]
[ Исследование квадратного трехчлена ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
    a sin x + b cos x + c = 0,   2a tg x + b ctg x + 2c = 0
имеет решение.

Прислать комментарий     Решение

Задача 110125

Темы:   [ Тригонометрические уравнения ]
[ Геометрические интерпретации в алгебре ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .
Прислать комментарий     Решение


Задача 61167

Темы:   [ Тригонометрические уравнения ]
[ Квадратные корни (прочее) ]
Сложность: 4
Классы: 9,10,11

Решите уравнения при 0o < x < 90o:

a) $ \sqrt{13-12\cos x}$ + $ \sqrt{7-4\sqrt3\sin x}$ = 2$ \sqrt{3}$;

б) $ \sqrt{2-2\cos x}$ + $ \sqrt{10-6\cos x}$ = $ \sqrt{10-6\cos 2x}$;

в) $ \sqrt{5-4\cos x}$ + $ \sqrt{13-12\sin
x}$ = $ \sqrt{10}$.
Прислать комментарий     Решение

Задача 109152

Темы:   [ Тригонометрические уравнения ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4+
Классы: 9,10,11

Сколько корней имеет уравнение sin x=x/100 ?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .