ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На боковых сторонах AB и AC равнобедренного треугольника ABC отмечены точки P и Q так, что ∠PXB = ∠QXC, где X – середина основания BC. Две окружности касаются внешним образом. Прямая, проведённая через точку касания, образует в окружностях хорды, одна из которых равна 13/5 другой. Найдите радиусы окружностей, если расстояние между центрами равно 36. В равнобедренном треугольнике ABC сторона AC = b, стороны BA = BC = a, AM и CN – биссектрисы углов A и C. Найдите MN. Докажите, что значение любой периодической цепной дроби – квадратичная иррациональность. Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл? Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO. Используя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег. Фабрика игрушек выпускает проволочные кубики, в вершинах которых расположены маленькие разноцветные шарики. По ГОСТу в каждом кубике должны быть использованы шарики всех восьми цветов (белого и семи цветов радуги). Сколько разных моделей кубиков может выпускать фабрика? AD – биссектриса треугольника ABC. Точка M лежит на стороне AB, причём AM = MD. Докажите, что MD || AC. Пусть AA1 и CC1 – высоты остроугольного треугольника ABC . Прямая, проходящая через центры вписанных окружностей треугольников AA1C и CC1A пересекает стороны AB и BC треугольника ABC в точках X и Y . Докажите, что BX=BY . В треугольнике ABC сторона AB = 15 и AC = 10, AD – биссектриса угла A. Из точки D проведена прямая, параллельная AB, до пересечения с AC в точке E. Найдите AE, EC и DE. Найдите острые углы прямоугольного треугольника, если медиана, проведённая к его гипотенузе, делит прямой угол в отношении 1 : 2. Докажите равенство треугольников по углу, биссектрисе и стороне, исходящим из вершины этого угла. Какой угол образуют минутная и часовая стрелка в 3 часа 05 минут? Докажите, что если Pn/Qn (n ≥ 1) – подходящая дробь к числу α, то имеет место по крайней мере одно из неравенств Через вершины A , B и C трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой CD , а её центр лежит на диагонали AC . Найдите площадь трапеции ABCD , если BC=2 , AD=8 . Существуют ли такие попарно различные натуральные числа m, n, p, q, что m + n = p + q и |
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 418]
Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0, P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все числа в последовательности a1, a2, ... различны.
Несколько путников движутся с постоянными скоростями по прямолинейной дороге. Известно, что в течение некоторого периода времени сумма попарных расстояний между ними монотонно уменьшалась. Докажите, что в течение того же периода сумма расстояний от некоторого путника до всех остальных тоже монотонно уменьшалась.
Существуют ли такие попарно различные натуральные числа m, n, p, q, что m + n = p + q и
По данному натуральному числу a0 строится последовательность {an} следующим образом
Целые числа m и n таковы, что сумма
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 418]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке