ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством: Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.
Точки A , B , C , D , A1 , B1 , C1 , D1
лежат на сфере. Отрезки AA1 , BB1 , CC1 , DD1
пересекаются в точке S , которая делит отрезок DD1 пополам.
Известно, что DD1 = 2 |
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 2399]
Точки A , B , C , D , A1 , B1 , C1 , D1
лежат на сфере. Отрезки AA1 , BB1 , CC1 , DD1
пересекаются в точке S , которая делит отрезок DD1 пополам.
Известно, что DD1 = 2
Ортогональной проекцией правильного тетраэдра на
плоскость, параллельную одному из рёбер, является
четырёхугольник площади S , у которого отношение
наибольшей и наименьшей сторон равно
Высоты тетраэдра пересекаются в одной точке (такой тетраэдр называется ортоцентрическим). Докажите, что точка пересечения медиан, точка пересечения высот и центр описанной сферы лежат на одной прямой.
Пусть a и a1 , b и b1 , c и c1 – пары
противоположных рёбер тетраэдра; α , β и γ
соответственно – углы между ними ( α
В правильной треугольной пирамиде SABC ( S – вершина) на ребре AC взята точка L так, что LC:AC=4:5 . Медианы грани SAB пересекаются в точке K . Сфера, центр которой лежит на прямой KL , проходит через точки B , C и пересекает прямую AB в точке P так, что BP=b . Найдите объём пирамиды SABC , если известно, что радиус сферы равен b .
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 2399]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке