ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда  |PQ| = |QR|.

   Решение

Задачи

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 829]      



Задача 108615

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.

Прислать комментарий     Решение

Задача 111042

Темы:   [ Описанные четырехугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема синусов ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 9,10,11

Дан описанный четырёхугольник ABCD, P, Q и R – основания перпендикуляров, опущенных из вершины D на прямые BC, CA, AB соответственно. Докажите, что биссектрисы углов ABC, ADC и диагональ AC пересекаются в одной точке тогда и только тогда, когда  |PQ| = |QR|.

Прислать комментарий     Решение

Задача 111625

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Прямоугольные треугольники (прочее) ]
[ Биссектриса угла ]
Сложность: 4-
Классы: 8,9

В прямоугольном треугольнике ABC проведена высота CH к гипотенузе AB. Биссектрисы углов CAB и BCH пересекаются в точке M, а биссектрисы углов CBA и ACH – в точке N. Докажите, что  MN || AB.

Прислать комментарий     Решение

Задача 64914

Темы:   [ Вписанные и описанные окружности ]
[ Синусы и косинусы углов треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 9,10

Пусть O – центр описанной окружности остроугольного треугольника ABC. Прямая, проходящая через O и параллельная BC, пересекает AB и AC в точках P и Q соответственно. Известно, что сумма расстояний от точки O до сторон AB и AC равна OA. Докажите, что сумма отрезков PB и QC равна PQ.

Прислать комментарий     Решение

Задача 64973

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Построения одной линейкой ]
[ Замечательное свойство трапеции ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9,10

Пользуясь только линейкой, разделите сторону квадратного стола на n равных частей. Линии можно проводить только на поверхности стола.

Прислать комментарий     Решение

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .