ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что в прямоугольном треугольнике каждый катет меньше гипотенузы. Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника. Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом? Серёжа вырезал из картона две одинаковые фигуры. Он положил их с нахлёстом на дно прямоугольного ящика. Дно оказалось полностью покрыто. В центр дна вбили гвоздь. Мог ли гвоздь проткнуть одну картонку и не проткнуть другую?
Кузнечик прыгает по отрезку [0,1]. За один прыжок он может попасть
из точки x либо в точку x/31/2, либо в точку
x/31/2+(1-(1/31/2)). На отрезке [0,1] выбрана точка a.
Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга? Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.) Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке. Для данной пары окружностей постройте две концентрические окружности, каждая из которых касается двух данных. Сколько решений имеет задача, в зависимости от расположения окружностей?
На продолжении наибольшей стороны AC треугольника ABC отложен
отрезок |CD|=|BC| . Доказать, что Точка M расположена на боковой стороне AB трапеции ABCD, причём AM : BM = 2 : 1. Прямая, проходящая через точку M параллельно основаниям AD и BC, пересекает боковую сторону CD в точке N. Найдите MN, если AD = 18, BC = 6. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 200]
Точка M расположена на боковой стороне AB трапеции ABCD, причём AM : BM = 2 : 1. Прямая, проходящая через точку M параллельно основаниям AD и BC, пересекает боковую сторону CD в точке N. Найдите MN, если AD = 18, BC = 6.
Oпределите отношение сторон прямоугольника, описанного около уголка из пяти клеток.
Высоты $AA_1$, $CC_1$ остроугольного треугольника $ABC$ пересекаются в точке $H$; $B_0$ – середина стороны $AC$. Прямая, проходящая через вершину $B$ параллельно $AC$, пересекает прямые $B_0A_1$, $B_0C_1$ в точках $A'$, $C'$ соответственно. Докажите, что прямые $AA'$, $CC'$, $BH$ пересекаются в одной точке.
На гипотенузе AВ прямоугольного треугольника ABC отметили точку D так, что ВD = AС. Докажите, что в треугольнике AСD биссектриса AL, медиана СM и высота DH пересекаются в одной точке.
В равнобедренном треугольнике ABC (AC – основание) на
стороне BC находятся точки D и E, причём
DE = EC = 2.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 200]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке