ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками. Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности. Через точку на плоскости провели 10 прямых, после чего плоскость разрезали по этим прямым на углы.
В четырёхугольнике ABCD диагонали AC и BD относятся как 1:4 , а
угол между ними равен 60o . Чему равен больший из отрезков,
соединяющих середины противоположных сторон четырёхугольника ABCD ,
если меньший равен По данному натуральному числу a0 строится последовательность {an} следующим образом Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N. Точки K и L – середины диагоналей соответственно AC и BD выпуклого четырёхугольника ABCD . Прямая KL пересекает стороны AD и BC в точках X и Y соответственно. Описанная окружность треугольника AKX пересекает сторону AB в точке M . Докажите, что описанная окружность треугольника BLY тоже проходит через точку M . Биссектриса угла параллелограмма делит сторону параллелограмма на отрезки, равные a и b. Найдите стороны параллелограмма.
Из точки M на плоскость α опущен перпендикуляр
MH длины В магическом квадрате n×n, составленном из чисел 1, 2, ..., n², центры каждых двух клеток соединили вектором в направлении от большего числа к меньшему. Докажите, что сумма всех полученных векторов равна нулю. (Магическим называется клетчатый квадрат, в клетках которого записаны числа так, что суммы чисел во всех его строках и столбцах равны.) Володя бежит по круговой дистанции с постоянной скоростью. В двух точках дистанции стоит по фотографу. После старта Володя 2 минуты был ближе к первому фотографу, затем 3 минуты – ближе ко второму фотографу, а потом снова ближе к первому. За какое время Володя пробежал весь круг? Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки. Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток. а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды,
пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные
сундуки, дать точный ответ на этот вопрос? Докажите, что при k ≥ 1 выполняется равенство:
Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.
В треугольнике ABC на стороне BC выбрана точка M так, что точка пересечения медиан треугольника ABM лежит на описанной окружности треугольника ACM , а точка пересечения медиан треугольника ACM лежит на описанной окружности треугольника ABM . Докажите, что медианы треугольников ABM и ACM из вершины M равны. В прямоугольном треугольнике ABC проведена высота CH к гипотенузе AB. Биссектрисы углов CAB и BCH пересекаются в точке M, а биссектрисы углов CBA и ACH – в точке N. Докажите, что MN || AB. |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 330]
Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.
В прямоугольном треугольнике ABC проведена высота CH к гипотенузе AB. Биссектрисы углов CAB и BCH пересекаются в точке M, а биссектрисы углов CBA и ACH – в точке N. Докажите, что MN || AB.
В окружность вписан равнобедренный треугольник ABC, в
котором AB = BC и
В треугольнике ABC боковые стороны AB и BC равны.
Прямая, параллельная основанию AC, пересекает сторону AB в точке
D, а сторону BC в точке E, причём каждый из отрезков AD,
EC и DE равен 2. Точка F — середина отрезка AC, и точка G —
середина отрезка EC, соединены отрезком прямой. Известно, что
величина угол GFC равен
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке