Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
  а) слева;  б) в центре;  в) справа?

(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)

Вниз   Решение


В трапеции ABCD сторона AB перпендикулярна основаниям AD и BC . Окружность касается стороны AB в точке K , лежащей между точками A и B , имеет с отрезком BC единственную общую точку C , проходит через точку D и пересекает отрезок AD в точке E , отличной от точки D . Найдите расстояние от точки K до прямой CD , если AD=48 , BC=12 .

ВверхВниз   Решение


Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?

ВверхВниз   Решение


Плоский угол при вершине правильной четырёхугольной пирамиды равен ϕ . Найдите угол боковой грани с плоскостью основания пирамиды.

ВверхВниз   Решение


Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .

ВверхВниз   Решение


Окружность касается сторон AC и BC треугольника ABC в точках A и B соответственно. На дуге этой окружности, лежащей внутри треугольника, расположена точка K так, что расстояния от неё до сторон AC и BC равны 6 и 24 соответственно. Найдите расстояние от точки K до стороны AB.

ВверхВниз   Решение


Автор: Храмцов Д.

Можно ли во всех точках плоскости с целыми координатами записать натуральные числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?

ВверхВниз   Решение


Раскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу.

ВверхВниз   Решение


Набор пятизначных чисел {N1,,Nk} таков, что любое пятизначное число, все цифры которого идут в возрастающем порядке, совпадает хотя бы в одном разряде хотя бы с одним из чисел N1,,Nk. Найдите наименьшее возможное значение k.

ВверхВниз   Решение


Через точку C на окружности проведены касательная, а также хорда BC и хорда DC, BD = c. Расстояния от точек B и D до касательной равны b и d. Найдите площадь треугольника BCD.

ВверхВниз   Решение


В остроугольном треугольнике расстояние от середины каждой стороны до противоположной вершины равно сумме расстояний от неё до сторон треугольника. Докажите, что этот треугольник – равносторонний.

ВверхВниз   Решение


В трапеции ABCD сторона AB перпендикулярна основаниям AD и BC . Окружность касается стороны AB в точке K , лежащей между точками A и B , проходит через точки C и D , пересекает отрезки AD и BC в их внутренних точках. Найдите расстояние от точки K до прямой CD , если AD=49 , BC=36 .

ВверхВниз   Решение


Пусть h  — наименьшая высота тетраэдра, d  — наименьшее расстояние между его противоположными ребрами. При каких t возможно неравенство d>th ?

Вверх   Решение

Задачи

Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 489]      



Задача 110178

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Разбиения на пары и группы; биекции ]
[ Полуинварианты ]
[ Процессы и операции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 6-
Классы: 9,10,11

В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

Прислать комментарий     Решение

Задача 111729

Темы:   [ Достроение тетраэдра до параллелепипеда ]
[ Объем помогает решить задачу ]
[ Длины и периметры (геометрические неравенства) ]
[ Неравенства с площадями ]
[ Наименьшая или наибольшая площадь (объем) ]
Сложность: 6-
Классы: 10,11

Пусть h  — наименьшая высота тетраэдра, d  — наименьшее расстояние между его противоположными ребрами. При каких t возможно неравенство d>th ?
Прислать комментарий     Решение


Задача 73665

Темы:   [ Системы точек ]
[ Метод ГМТ ]
[ Метод ГМТ в пространстве ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Движение помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Объем помогает решить задачу ]
Сложность: 10-
Классы: 9,10,11

Какое наибольшее число точек можно разместить a) на плоскости; б)* в пространстве так, чтобы ни один из треугольников с вершинами в этих точках не был тупоугольным?
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)
Прислать комментарий     Решение


Задача 105076

Темы:   [ Полуинварианты ]
[ Двоичная система счисления ]
[ Перестановки и подстановки (прочее) ]
[ Процессы и операции ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.

Прислать комментарий     Решение

Задача 107997

Темы:   [ Плоскость, разрезанная прямыми ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Правильные многоугольники ]
[ Свойства симметрий и осей симметрии ]
[ Системы отрезков, прямых и окружностей ]
[ Принцип крайнего ]
Сложность: 4
Классы: 8,9,10,11

Автор: Анджанс А.

Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

Прислать комментарий     Решение

Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 489]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .