|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что: Числа a, b, c таковы, что a²(b + c) = b²(a + c) = 2008 и a ≠ b. Найдите значение выражения c²(a + b). |
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 979]
Числа a, b, c таковы, что a²(b + c) = b²(a + c) = 2008 и a ≠ b. Найдите значение выражения c²(a + b).
Даны числа a, b, c.
Целые числа a, b, c таковы, что значения квадратных трёхчленов bx² + cx + a и cx² + ax + b при x = 1234 совпадают.
Даны квадратные трёхчлены x² + 2a1x + b1, x² + 2a2x + b2, x² + 2a3x + b3. Известно, что a1a2a3 = b1b2b3 > 1.
Задайте формулой какую-нибудь квадратичную функцию, график которой пересекает оси координат в вершинах прямоугольного треугольника.
Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 979] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|