ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Приведённые квадратные трёхчлены f(x) и g(x) таковы, что уравнения  f(g(x)) = 0  и  g(f(x)) = 0  не имеют вещественных корней.
Докажите, что хотя бы одно из уравнений  f(f(x)) = 0  и  g(g(x)) = 0  тоже не имеет вещественных корней.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 117]      



Задача 111842

Темы:   [ Итерации ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 8,9,10

Приведённые квадратные трёхчлены f(x) и g(x) таковы, что уравнения  f(g(x)) = 0  и  g(f(x)) = 0  не имеют вещественных корней.
Докажите, что хотя бы одно из уравнений  f(f(x)) = 0  и  g(g(x)) = 0  тоже не имеет вещественных корней.

Прислать комментарий     Решение

Задача 109759

Темы:   [ Кубические многочлены ]
[ Исследование квадратного трехчлена ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4+
Классы: 9,10,11

Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству  P² + Q² = R².  Докажите, что все корни одного из многочленов третьей степени – действительные.

Прислать комментарий     Решение

Задача 109199

Темы:   [ Алгебраические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
[ Неравенство Иенсена ]
[ Выпуклость и вогнутость (прочее) ]
[ Теоремы о среднем значении ]
[ Неравенство Коши ]
Сложность: 5-
Классы: 8,9,10

Положительные числа х1, ..., хk удовлетворяют неравенствам  
  а) Докажите, что  k > 50.
  б) Построить пример таких чисел для какого-нибудь k.
  в) Найти минимальное k, для которого пример возможен.

Прислать комментарий     Решение

Задача 109746

Темы:   [ Теорема Безу. Разложение на множители ]
[ Исследование квадратного трехчлена ]
[ Соображения непрерывности ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 8,9,10

Два многочлена  P(x) = x4 + ax³ + bx² + cx + d  и  Q(x) = x² + px + q  принимают отрицательные значения на некотором интервале I длины более 2, а вне I – неотрицательны. Докажите, что найдётся такая точка x0, что  P(x0) < Q(x0).

Прислать комментарий     Решение

Задача 57533

Темы:   [ Теорема косинусов ]
[ Исследование квадратного трехчлена ]
[ Длины сторон (неравенства) ]
[ Неравенства для углов треугольника ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 5+
Классы: 9,10,11

Дан треугольник со сторонами a, b и c, причём  a ≥ b ≥ cx, y и z – углы некоторого другого треугольника. Докажите, что

bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 117]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .