Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

Вниз   Решение


Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра AB и CD взаимно перпендикулярны, AD=BC , расстояние от середины E ребра AB до плоскости ACD равно h , DAC = , ACD = , угол между ребром DC и гранью ABC равен . Найдите расстояние от точки E до плоскости BCD , угол между ребром AB и гранью ACD , а также угол между гранями ABD и ABC .

ВверхВниз   Решение


Автор: Фольклор

На координатной плоскости задан график функции  y = kx + b  (см. рисунок). В той же координатной плоскости схематически постройте график функции  y = kx² + bx.

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра AB и DC взаимно перпендикулярны, ADB = , ABD = , угол между ребром CD и гранью ABD равен , AD=a , середина ребра CD равноудалена от плоскостей ABD и ABC . Найдите ребро BC , угол CDB и угол между ребром AB и гранью BCD .

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

ВверхВниз   Решение


Автор: Иванов С.

В треугольнике ABC угол C – прямой. На стороне AC нашлась такая точка D, а на отрезке BD – такая точка K, что  ∠B = ∠KAD = ∠AKD.
Докажите, что  BK = 2DC.

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра BC и AD взаимно перпендикулярны, AB=CD , расстояние от середины O ребра BC до плоскости ABD равно h , CAD = CDA = , угол между ребром AD и гранью ABC равен arccos . Найдите расстояние от точки O до плоскости ACD , угол между ребром BC и гранью ABD , а также угол между гранями ABC и BCD .

ВверхВниз   Решение


Автор: Фольклор

Найдите наименьшее значение  x² + y²,  если  x2y² + 6x + 4y + 5 = 0.

ВверхВниз   Решение


Пусть точка A' лежит на одной из сторон трапеции ABCD , причём прямая AA' делит площадь трапеции пополам. Точки B' , C' и D' определяются аналогично. Докажите, что точка пересечения диагоналей четырёхугольников ABCD и A'B'C'D' симметричны относительно середины средней линии трапеции ABCD .

ВверхВниз   Решение


В магазине продают DVD-диски – по одному и упаковками двух видов (упаковки разных видов различаются по количеству и стоимости). Вася подсчитал, сколько требуется денег, чтобы купить N дисков (если выгоднее всего купить больше дисков, чем нужно – Вася так и делает):

Сколько дисков было в упаковках и по какой цене упаковки продавались?
Какое количество денег необходимо Васе, чтобы купить не менее 29 дисков?

ВверхВниз   Решение


Кривая на плоскости в некоторой системе координат (декартовой) служит графиком функции y = sin x. Может ли та же кривая являться графиком функции y = sin 2x в другой системе координат: если да, то каковы её начало координат и единицы длины на осях (относительно исходных координат и единиц длины)?

ВверхВниз   Решение


Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB.

ВверхВниз   Решение


Из Цветочного города в Солнечный ведёт шоссе длиной 12 км. На втором километре этого шоссе расположен железнодорожный переезд, который три минуты закрыт и три минуты открыт и т.д., а на четвёртом и на шестом километрах расположены светофоры, которые две минуты горят красным светом и три минуты – зелёным и т.д. Незнайка выезжает из Цветочного города в Солнечный в тот момент, когда переезд только что закрылся, а оба светофора только что переключились на красный. За какое наименьшее время (в минутах) он сможет доехать до Солнечного города, не нарушая правил, если его электромобиль едет по шоссе с постоянной скоростью (Незнайка не умеет ни тормозить, ни увеличивать скорость)?

ВверхВниз   Решение


В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны.

ВверхВниз   Решение


Даны две окружности, пересекающиеся в точках P и Q . C – произвольная точка одной из окружностей, отличная от P и Q ; A , B – вторые точки пересечения прямых CP , CQ с другой окружностью. Найдите геометрическое место центров окружностей, описанных около треугольников ABC .

ВверхВниз   Решение


300 бюрократов разбиты на три комиссии по 100 человек. Каждые два бюрократа либо знакомы друг с другом, либо незнакомы. Докажите, что найдутся два таких бюрократа из разных комиссий, что в третьей комиссии есть либо 17 человек, знакомых с обоими, либо 17 человек, незнакомых с обоими.

ВверхВниз   Решение


Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.)

ВверхВниз   Решение


Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.

ВверхВниз   Решение


Люди заходят с улицы в метро равномерно. Пройдя через турникеты, они оказываются в небольшом зале перед эскалаторами. Двери на вход только что открылись, и сначала зал перед эскалаторами был пустой, а на спуск работал только один эскалатор. Один эскалатор не справлялся с толпой, так что за 6 минут зал наполовину заполнился. Тогда включили на спуск второй эскалатор, но толпа продолжала увеличиваться – ещё через 15 минут зал был полон.

За какое время зал опустеет, если включить третий эскалатор?

ВверхВниз   Решение


На параболе  y = x²  выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.

ВверхВниз   Решение


Существуют ли такие попарно различные натуральные числа m, n, p, q, что  m + n = p + q  и  

ВверхВниз   Решение


После урока на доске остался график функции  y = k/x  и пять прямых, параллельных прямой  y = kx  (k ≠ 0).
Найдите произведение абсцисс всех десяти точек пересечения.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80]      



Задача 111911

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

После урока на доске остался график функции  y = k/x  и пять прямых, параллельных прямой  y = kx  (k ≠ 0).
Найдите произведение абсцисс всех десяти точек пересечения.

Прислать комментарий     Решение

Задача 116232

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 10,11

Кривая на плоскости в некоторой системе координат (декартовой) служит графиком функции y = sin x. Может ли та же кривая являться графиком функции y = sin 2x в другой системе координат: если да, то каковы её начало координат и единицы длины на осях (относительно исходных координат и единиц длины)?

Прислать комментарий     Решение

Задача 116412

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 10,11

Про функцию f(x) известно следующее: любая прямая на координатной плоскости имеет с графиком  y = f(x)  столько же общих точек, сколько с параболой  y = x².  Докажите, что  f(x) ≡ x².

Прислать комментарий     Решение

Задача 65221

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 3+
Классы: 7,8

На листе бумаги были построены система координат (выделена жирно) и графики трёх функций:  y = ax + b,  y = bx + c  и  y = cx + a.  После этого стёрли обозначения и направления осей, а сам лист как-то повернули (см. рисунок). Укажите на рисунке ось абсцисс и ее направление.

Прислать комментарий     Решение

Задача 65572

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 9,10,11

На координатной плоскости нарисованы четыре графика функций вида  y = x² + ax + b,  где a, b – числовые коэффициенты. Известно, что есть ровно четыре точки пересечения, причём в каждой пересекаются ровно два графика. Докажите, что сумма наибольшей и наименьшей из абсцисс точек пересечения равна сумме двух других абсцисс.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .