Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Даны отрезки a и b. Постройте такой отрезок x, что

$\displaystyle \root$4$\displaystyle \of$x = $\displaystyle \root$4$\displaystyle \of$a + $\displaystyle \root$4$\displaystyle \of$b.

Вниз   Решение


Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

ВверхВниз   Решение


На какое наименьшее число тетраэдров можно разбить куб?

ВверхВниз   Решение


Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

ВверхВниз   Решение


Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

ВверхВниз   Решение


Докажите, что прямая, содержащая среднюю линию треугольника, параллельна стороне треугольника, а средняя линия треугольника равна половине этой стороны.

ВверхВниз   Решение


Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?

Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.

ВверхВниз   Решение


Автор: Бона М.

В турнире участвуют 2m команд. В первом туре встретились некоторые m пар команд, во втором – другие m пар.
Докажите, что после этого можно выбрать m команд, никакие две из которых ещё не играли между собой.

ВверхВниз   Решение


Докажите, что вписанный угол равен половине соответствующего центрального угла (или дуги) окружности.

ВверхВниз   Решение


Углы при основании AD трапеции ABCD равны 2$ \alpha$ и 2$ \beta$. Докажите, что трапеция описанная тогда и только тогда, когда $ {\frac{BC}{AD}}$ = tg$ \alpha$tg$ \beta$.

ВверхВниз   Решение


Из вершины A параллелограмма ABCD опущены высоты AM на BC и AN на CD. P – точка пересечения BN и DM. Докажите, что прямые AP и MN перпендикулярны.

ВверхВниз   Решение


Как в треугольнике ABC провести ломаную BDEFG (см. рисунок), чтобы все пять полученных треугольников имели одинаковые площади?

ВверхВниз   Решение


В окружности, радиус которой 1,4, определите расстояние от центра до хорды, если она отсекает дугу в 120°.

ВверхВниз   Решение


В окружность радиуса 5 вписан четырёхугольник ABCD, у которого угол D прямой,  AB : BC = 3 : 4.
Найдите периметр четырёхугольника ABCD, если его площадь равна 44.

ВверхВниз   Решение


Две стороны треугольника равны 2$ \sqrt{2}$ и 3, площадь треугольника равна 3. Найдите третью сторону.

ВверхВниз   Решение


Через середины M и N рёбер соответственно AA1 и C1D1 параллелепипеда ABCDA1B1C1D1 проведена плоскость параллельно диагонали BD основания. Постройте сечение параллелепипеда этой плоскостью. В каком отношении она делит диагональ A1C ?

ВверхВниз   Решение


Каких натуральных чисел от 1 до 1000000 (включительно) больше: чётных с нечётной суммой цифр или нечётных с чётной суммой цифр?

ВверхВниз   Решение


У выпуклых четырёхугольников ABCD и A'B'C'D' соответственные стороны равны. Доказать, что если $ \angle$A > $ \angle$A', то $ \angle$B < $ \angle$B', $ \angle$C > $ \angle$C' и $ \angle$D < $ \angle$D'.

ВверхВниз   Решение


Замкнутая пятизвенная ломаная образует равноугольную звезду (см. рис.).
Чему равен периметр внутреннего пятиугольника ABCDE, если длина исходной ломаной равна 1?

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 92]      



Задача 115769

Темы:   [ Общие четырехугольники ]
[ Пятиугольники ]
[ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Невыпуклый n-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли n равняться
  а) 5?
  б) 4?

Прислать комментарий     Решение

Задача 76539

Темы:   [ Разрезания (прочее) ]
[ Пятиугольники ]
Сложность: 4
Классы: 8,9

Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят.
Прислать комментарий     Решение


Задача 108234

Темы:   [ Против большей стороны лежит больший угол ]
[ Пятиугольники ]
[ Многоугольники (неравенства) ]
Сложность: 4
Классы: 7,8,9

Автор: Кноп К.А.

Существует ли выпуклый пятиугольник (все углы меньше 180o ) ABCDE , у которого все углы ABD , BCE , CDA , DEB и EAC – тупые?
Прислать комментарий     Решение


Задача 111678

Темы:   [ Угол между касательной и хордой ]
[ Пятиугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 8,9

Диагонали AC и BE правильного пятиугольника ABCDE пересекаются в точке K . Докажите, что описанная окружность треугольника CKE касается прямой BC .
Прислать комментарий     Решение


Задача 115687

Темы:   [ Ломаные ]
[ Пятиугольники ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4
Классы: 8,9

Замкнутая пятизвенная ломаная образует равноугольную звезду (см. рис.).
Чему равен периметр внутреннего пятиугольника ABCDE, если длина исходной ломаной равна 1?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .