Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 112]
|
|
Сложность: 3 Классы: 10,11
|
Даны радиусы r и R двух непересекающихся окружностей. Oбщие внутренние касательные этих окружностей перпендикулярны.
Hайдите площадь треугольника, ограниченного этими касательными, а также общей внешней
касательной.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
На день рождения Олегу подарили набор равных треугольников со сторонами 3, 4 и 5 см. Олег взял все эти треугольники и сложил из них квадрат. Докажите, что треугольников было чётное количество.
|
|
Сложность: 3+ Классы: 9,10
|
Каково наибольшее
n, при котором так можно расположить
n точек на
плоскости, чтобы каждые 3 из них служили вершинами прямоугольного
треугольника?
На гипотенузе AВ прямоугольного треугольника ABC отметили точку D так, что ВD = AС. Докажите, что в треугольнике AСD биссектриса AL, медиана СM и высота DH пересекаются в одной точке.
|
|
Сложность: 4- Классы: 8,9,10
|
В треугольнике ABC проведена высота AH. Точки Ib и Ic – центры вписанных окружностей треугольников ABH и CAH; L – точка касания вписанной окружности треугольника ABC со стороной BC. Найдите угол LIbIc.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 112]