|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а
каждые двое встречались в вылазках ровно по разу. Треугольник имеет площадь, равную 1. Докажите, что длина его средней по длине стороны не меньше, чем Каждая из сторон выпуклого четырехугольника разделена на пять равных частей и соответствующие точки противоположных сторон соединены (см. рис.). Докажите, что площадь среднего (заштрихованного) четырехугольника в 25 раз меньше площади исходного. Дан треугольник ABC. На продолжении стороны AC за точку C
взята точка N, причём CN = 2/3 AC. Точка K находится на стороне AB, причём AK : KB = 3 : 2. Все рёбра правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 равны 4. На ребре EE1 взята точка K так, что E1K= Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если: Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причём AM : MB = 1 : 2, AN : NC = 3 : 2. Прямая MN пересекает продолжение стороны BC в точке F. Найдите CF : BC. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 181]
Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причём AM : MB = 1 : 2, AN : NC = 3 : 2. Прямая MN пересекает продолжение стороны BC в точке F. Найдите CF : BC.
Через точку P, лежащую на медиане CC1 треугольника ABC, проведены прямые AA1 и BB1 (точки A1 и B1 лежат на сторонах BC и CA соответственно).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 181] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|