ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что  IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.

   Решение

Задачи

Страница: << 163 164 165 166 167 168 169 >> [Всего задач: 1275]      



Задача 116158

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Медиана, проведенная к гипотенузе ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника AB, M – середина AB. Описанные окружности треугольников AMA1 и BMB1, пересекают прямые AC и BC в точках K и L соответственно. Докажите, что K, M и L лежат на одной прямой.

Прислать комментарий     Решение

Задача 116234

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Подобные треугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Внутри треугольника ABC взята такая точка O, что  ∠ABO = ∠CAO,  ∠BAO = ∠BCO,  ∠BOC = 90°.  Найдите отношение  AC : OC.

Прислать комментарий     Решение

Задача 116333

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10

Около треугольника ABC описана окружность. Диаметр AD пересекает сторону BC в точке E, при этом  AC = EC  и  AE : DE = m.
Найдите отношение  BE : CE.

Прислать комментарий     Решение

Задача 116421

Темы:   [ Описанные четырехугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Вписанный угол, опирающийся на диаметр ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что  IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Задача 116485

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 7,8,9

AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что  CK = CL.  Прямая KL и биссектриса угла B пересекаются в точке P.
Докажите, что  AP = PL.

Прислать комментарий     Решение

Страница: << 163 164 165 166 167 168 169 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .