Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

На хорде KL окружности радиуса 7 взята точка M, KM = 5, ML = 6. Найдите максимальное из расстояний от точки M до точек окружности.

Вниз   Решение


ВверхВниз   Решение


Даны положительные числа x, y, z. Докажите неравенство   

ВверхВниз   Решение


Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D, соответственно пересекаются в точке Q .
Докажите, что прямые AB и PQ перпендикулярны.

ВверхВниз   Решение


Автор: Фольклор

В трапеции ABCD  (AD || BC)  из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если  АВ = 5,  EF = 4.

ВверхВниз   Решение


Шесть кружков последовательно соединили отрезками. На каждом отрезке записали некоторое число, а в каждом кружке – сумму двух чисел, записанных на входящих в него отрезках. После этого стёрли все числа на отрезках и в одном из кружков (см. рис.). Можно ли найти число, стёртое в кружке?

ВверхВниз   Решение


Окружность касается сторон AB, BC, CD параллелограмма ABCD в точках K, L, M соответственно.
Докажите, что прямая KL делит пополам высоту параллелограмма, опущенную из вершины C на AB.

ВверхВниз   Решение


По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально?

ВверхВниз   Решение


Сторона треугольника равна   ,   углы, прилежащие к ней, равны 75° и 60°.
Найдите отрезок, соединяющий основания высот, проведённых из вершин этих углов.

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если  AB = DE,  то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.

ВверхВниз   Решение


Автор: Фольклор

Убирая детскую комнату к приходу гостей, мама нашла девять носков. Среди каждых четырёх из этих носков хотя бы два принадлежали одному ребёнку, а среди каждых пяти не более трёх имели одного хозяина. Сколько могло быть детей и сколько носков могло принадлежать каждому ребёнку?

ВверхВниз   Решение


Автор: Жуков Г.

Банк обслуживает миллион клиентов, список которых известен Остапу Бендеру. У каждого есть свой PIN-код из шести цифр, у разных клиентов коды разные. Остап Бендер за один ход может выбрать любого клиента, которого он еще не выбирал, и подсмотреть у него цифры кода на любых N позициях (у разных клиентов он может выбирать разные позиции). Остап хочет узнать код миллионера Корейко. При каком наименьшем N он гарантированно сможет это сделать?

ВверхВниз   Решение


Хорда BC окружности радиуса 12 разделена точкой D на отрезки BD = 8 и DC = 10. Найдите минимальное из расстояний от точки D до точек окружности.

ВверхВниз   Решение


В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

ВверхВниз   Решение


В выпуклом четырёхугольнике две стороны равны 1, а другие стороны и обе диагонали не больше 1. Какое максимальное значение может принимать периметр четырёхугольника?

ВверхВниз   Решение


Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.

ВверхВниз   Решение


На плоскости отмечены точки с целочисленными координатами. Доказать, что найдётся окружность, внутри которой лежат ровно 1982 отмеченные точки.

ВверхВниз   Решение


Считая известной формулу     доказать, что для различных натуральных чисел a1, a2, ..., an справедливо неравенство     Возможно ли равенство для каких-нибудь различных натуральных чисел a1, a2, ..., an?

ВверхВниз   Решение


Даны натуральное число  n > 3  и положительные числа x1, x2, ..., xn, произведение которых равно 1.
Докажите неравенство  

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD выполняются равенства:  ∠B = ∠C  и  CD = 2AB.  На стороне BC выбрана такая точка X, что  ∠BAX = ∠CDA.
Докажите, что  AX = AD.

ВверхВниз   Решение


I – центр вписанной окружности треугольника ABC. Окружность, проходящая через точку I, касается сторон AB и AC в точках X и Y соответственно. Докажите, что отрезок XY касается вписанной в треугольник ABC окружности.

Вверх   Решение

Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 772]      



Задача 116169

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Пусть I – центр окружности, вписанной в треугольник ABC. Oкружность, описанная около треугольника BIC, пересекает прямые AB и AC в точках E и F соответственно. Докажите, что прямая EF касается окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение

Задача 116205

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Две пары подобных треугольников ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 10,11

Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.

Прислать комментарий     Решение

Задача 116503

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Две касательные, проведенные из одной точки ]
[ Угол между касательной и хордой ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9,10

I – центр вписанной окружности треугольника ABC. Окружность, проходящая через точку I, касается сторон AB и AC в точках X и Y соответственно. Докажите, что отрезок XY касается вписанной в треугольник ABC окружности.

Прислать комментарий     Решение

Задача 116815

Темы:   [ Неравенство треугольника (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Верно ли, что в вершинах любого треугольника можно расставить положительные числа так, чтобы сумма чисел в концах каждой стороны треугольника равнялась длине этой стороны?

Прислать комментарий     Решение

Задача 116820

Темы:   [ Параллелограммы (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Окружность касается сторон AB, BC, CD параллелограмма ABCD в точках K, L, M соответственно.
Докажите, что прямая KL делит пополам высоту параллелограмма, опущенную из вершины C на AB.

Прислать комментарий     Решение

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .