ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стороне AC треугольника ABC отметили произвольную точку D. Точки E и F симметричны точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A0C0, где A0 и C0 – точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.

   Решение

Задачи

Страница: << 146 147 148 149 150 151 152 >> [Всего задач: 829]      



Задача 116421

Темы:   [ Описанные четырехугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Вписанный угол, опирающийся на диаметр ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что  IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Задача 116585

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанный угол, опирающийся на диаметр ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9,10

На стороне AC треугольника ABC отметили произвольную точку D. Точки E и F симметричны точке D относительно биссектрис углов A и C соответственно. Докажите, что середина отрезка EF лежит на прямой A0C0, где A0 и C0 – точки касания вписанной окружности треугольника ABC со сторонами BC и AB соответственно.

Прислать комментарий     Решение

Задача 52494

 [Задача Архимеда]
Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Ломаные ]
Сложность: 4-
Классы: 8,9

В дугу AB окружности вписана ломаная AMB из двух отрезков  (AM > MB).
Докажите, что основание перпендикуляра KH, опущенного из середины K дуги AB на отрезок AM, делит ломаную пополам.

Прислать комментарий     Решение

Задача 53390

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC  ∠B = 36°, ∠C = 42°.  На стороне BC взята точка M так, что  BM = R,  где R – радиус описанной окружности треугольника ABC.
Найдите угол MAC.

Прислать комментарий     Решение

Задача 54387

Темы:   [ Ромбы. Признаки и свойства ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Дан ромб KLMN. На продолжении стороны KN за точку N взята точка P так, что  KP = 40.  Прямые KM и LP пересекаются в точке O. Точки K, L и O лежат на окружности радиуса 15 с центром на отрезке KP. Найдите KM.

Прислать комментарий     Решение

Страница: << 146 147 148 149 150 151 152 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .