ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклый четырёхугольник ABCD таков, что  AB·CD = AD·BC.  Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 64403

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Выход в пространство ]
[ Окружность Аполлония ]
[ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
Сложность: 4+

Пусть X – такая точка внутри треугольника ABC, что  XA·BC = XB·AC = XC·ABI1, I2, I3 – центры вписанных окружностей треугольников XBC, XCA и XAB соответственно. Докажите, что прямые AI1, BI2 и CI3 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 66309

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Касающиеся окружности ]
[ Поворотная гомотетия (прочее) ]
[ Инверсия помогает решить задачу ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 9,10

Автор: Mahdi Etesami Fard

Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.

Прислать комментарий     Решение

Задача 116602

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Отношение, в котором биссектриса делит сторону ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 8,9,10

Выпуклый четырёхугольник ABCD таков, что  AB·CD = AD·BC.  Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.

Прислать комментарий     Решение

Задача 64976

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Построение треугольников по различным точкам ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Окружность Аполлония ]
Сложность: 4
Классы: 9,10,11

Восстановите равнобедренный треугольник ABC  (AB = AC)  по точкам I, M, H пересечения биссектрис, медиан и высот соответственно.

Прислать комментарий     Решение

Задача 115948

Темы:   [ Концентрические окружности ]
[ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Окружность Аполлония ]
Сложность: 4
Классы: 8,9,10,11

Две окружности с радиусами 1 и 2 имеют общий центр в точке O. Вершина A правильного треугольника ABC лежит на большей окружности, а середина стороны BC – на меньшей. Чему может быть равен угол BOC?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .