ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

В треугольнике ABC:  ∠B = 22,5°,  ∠C = 45°.  Докажите, что высота АН, медиана BM и биссектриса CL пересекаются в одной точке.

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 829]      



Задача 115292

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4-
Классы: 8,9

Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

Прислать комментарий     Решение

Задача 115692

Темы:   [ Три точки, лежащие на одной прямой ]
[ Пересекающиеся окружности ]
[ Вписанные четырехугольники ]
Сложность: 4-
Классы: 8,9

Две окружности с центрами O1 и O2 пересекаются в точках A и B. Окружность, проходящая через точки O1, B и O2 пересекает вторую окружность также и в точке P. Докажите, что точки O1, A и P лежат на одной прямой.

Прислать комментарий     Решение

Задача 115909

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Теорема Карно ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Докажите, что если перпендикуляры, восставленные из оснований биссектрис соответствующим сторонам треугольника, пересекаются в одной точке, то треугольник равнобедренный.

Прислать комментарий     Решение

Задача 116211

Темы:   [ Ломаные ]
[ Четность и нечетность ]
[ Целочисленные решетки (прочее) ]
Сложность: 4-
Классы: 7,8,9

Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны.
Может ли ломаная пройти через все вершины клеток?

Прислать комментарий     Решение

Задача 116890

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Четыре точки, лежащие на одной окружности ]
[ Замечательное свойство трапеции ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В треугольнике ABC:  ∠B = 22,5°,  ∠C = 45°.  Докажите, что высота АН, медиана BM и биссектриса CL пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .