Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Автор: Мухин Д.Г.

В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?

Вниз   Решение


Докажите, что  cos2($ \alpha$/2) = p(p - a)/bc и  sin2($ \alpha$/2) = (p - b)(p - c)/bc.

ВверхВниз   Решение


На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы?

ВверхВниз   Решение


Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?

ВверхВниз   Решение


Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?

ВверхВниз   Решение


Пусть  f(x) = (x – a)(x – b)(x – c)  – многочлен третьей степени с комплексными корнями a, b, c.
Докажите, что корни производной этого многочлена лежат внутри треугольника с вершинами в точках a, b, c.

ВверхВниз   Решение


На сторонах AB и CD четырехугольника ABCD взяты точки M и N так, что  AM : MB = CN : ND. Отрезки AN и DM пересекаются в точке K, а отрезки BN и CM — в точке L. Докажите, что  SKMLN = SADK + SBCL.

ВверхВниз   Решение


Среди своих старых рисунков Катя нашла несколько картинок с разноцветным зонтиком. Катя помнит, что рисовала один и тот же зонтик (вид сверху), только повёрнутый по-разному. К сожалению, от времени краска частично выцвела.

Помогите Кате восстановить, в каком порядке располагались цвета на зонтике, если идти от 1 (розового) по часовой стрелке.

ВверхВниз   Решение


Потроить треугольник по высоте к стороне a ha, медиане к стороне a ma и высоте к стороне b hb.

ВверхВниз   Решение


Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Докажите, что какие-то два из исходных чисел совпадают.

ВверхВниз   Решение


Доказать, что квадрат любого простого числа  p > 3  при делении на 12 даёт в остатке 1.

ВверхВниз   Решение


Докажите, что площадь любой грани тетраэдра меньше суммы площадей трёх остальных его граней.

ВверхВниз   Решение


Докажите, что касательные к параболе 4y = x2 в точках (2t1, t21) и (2t2, t22) пересекаются в точке (t1 + t2, t1, t2).

ВверхВниз   Решение


Потроить треугольник по сторонам a и b и медиане к стороне c mc.

ВверхВниз   Решение


Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 420]      



Задача 35261

Темы:   [ Делимость чисел. Общие свойства ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7,8

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

Прислать комментарий     Решение

Задача 60462

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 6,7,8

Когда натуральное число имеет нечётное количество делителей?

Прислать комментарий     Решение

Задача 60478

 [Числа Ферма]
Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Пусть a и n – натуральные числа, большие 1. Докажите, что если число  an + 1  простое, то a чётно и  n = 2k.
(Числа вида  fk = 22k + 1  называются числами Ферма.)

Прислать комментарий     Решение

Задача 60660

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Докажите, что число  11999 + 21999 + ... + 161999  делится на 17.

Прислать комментарий     Решение

Задача 60667

Темы:   [ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 9,10,11

Докажите, что в трёхзначном числе, кратном 37, всегда можно переставить цифры так, что новое число также будет кратно 37.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 420]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .