ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах треугольника ABC вне его построены правильные треугольники
ABC1, BCA1 и CAB1. Доказать, что
В треугольнике ABC даны три стороны: AB = 26, BC = 30 и AC = 28. Найдите часть площади этого треугольника, заключённую между высотой и биссектрисой, проведёнными из вершины B.
Выведите формулу для суммы
13 + 23 + 33 +...+ n3.
У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если а) N = 201; б) N = 400? В выпуклом четырёхугольнике MNPQ диагональ NQ является
биссектрисой угла PNM и пересекается с диагональю PM в точке S.
На боковых сторонах KL и MN равнобедренной трапеции KLMN выбраны соответственно точки P и Q, причём отрезок PQ параллелен основанию трапеции. Известно, что в каждую из трапеций KPQN и PLMQ можно вписать окружность и радиусы этих окружностей равны R и r соответственно. Найдите основания LM и KN.
Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что ∠KON + ∠MOL = 180°. ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Докажите, что площадь четырехугольника ABCD
равна
(AB . CD + BC . AD)/2.
Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных
углов, ось OY и биссектрису 2-го и 4-го координатных углов равны
соответственно 4, 3 Докажите, что при n = 4 среди полученных частей есть четырехугольник.
Докажите, что любой выпуклый многоугольник Каждая вершина правильного 13-угольника покрашена либо в чёрный, либо в белый
цвет. С помощью циркуля и линейки опишите около данной окружности ромб с данным углом. Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Точки M и N лежат на сторонах соответственно AB и AC треугольника ABC, причём AM = CN и AN = BM. Докажите, что площадь четырёхугольника BMNC по крайней мере в три раза больше площади треугольника AMN.
Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм. В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный.
Трапеция KLMN с основаниями LM и KN вписана в окружность, центр которой лежит на основании KN. Диагональ LN трапеции равна 4, а угол MNK равен 60o. Найдите основание LM трапеции.
Дан выпуклый четырёхугольник ABCD. Обозначим через IA, IB, IC и ID центры вписанных окружностей ωA, ωB, ωC и ωD треугольников DAB, ABC, BCD и CDA соответственно. Оказалось, что ∠BIAA + ∠ICIAID = 180°. Докажите, что ∠BIBA + ∠ICIBID = 180°. а) Найдите число всех полученных фигур.
В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что отношение максимальной скорости полицейского и максимальной скорости гангстера равно: а) 0,5; б) 0,49; в) 0,34; г) ⅓. Сможет ли полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером? Пентамино «крест» состоит из пяти квадратиков $1\times1$ (четыре квадратика примыкают по стороне к пятому). Можно ли из шахматной доски $8\times8$ вырезать, не обязательно по клеткам, девять таких крестов? В пространстве даны параллелограмм ABCD и плоскость M.
Расстояния от точек A, B и C до плоскости M равны
соответственно a, b и c. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 993]
Две вершины квадрата расположены на гипотенузе равнобедренного прямоугольного треугольника, а две другие – на катетах.
В пространстве даны параллелограмм ABCD и плоскость M.
Расстояния от точек A, B и C до плоскости M равны
соответственно a, b и c.
Постройте параллелограмм по двум соседним сторонам и углу между ними.
Диагонали параллелограмма ABCD пересекаются в точке O. Периметр параллелограмма равен 12, а разность периметров треугольников BOC и COD равна 2. Найдите стороны параллелограмма.
Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 993]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке