ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В равнобедренном треугольнике ABC угол B — прямой, а AB = BC = 2. Окружность касается обоих катетов в их серединах и высекает на гипотенузе хорду DE. Найдите площадь треугольника BDE. Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149]
Окружность, проходящая через точку D и касающаяся сторон AB и BC равнобедренной трапеции ABCD, пересекает стороны AD и CD соответственно в точках M и N. Известно, что AM : DM = 1 : 3, CN : DN = 4 : 3. Найдите основание BC, если AB = 7 и AD = 6.
Одна из двух прямых, проходящих через точку M, касается окружности в точке C, а вторая пересекает эту окружность в точках A и B, причём A — середина отрезка BM. Известно, что MC = 2 и BMC = 45o. Найдите радиус окружности.
В равнобедренном треугольнике ABC угол B — прямой, а AB = BC = 2. Окружность касается обоих катетов в их серединах и высекает на гипотенузе хорду DE. Найдите площадь треугольника BDE.
Центр окружности, касающейся стороны BC треугольника ABC в точке B и проходящей через точку A, лежит на отрезке AC. Найдите площадь треугольника ABC, если известно, что BC = 6 и AC = 9.
В равнобедренном треугольнике ABC известны, что AC = 4, AB = BC = 6. Биссектриса угла C пересекает сторону AB в точке D. Через точку D проведена окружность, касающаяся стороны AC в её середине и пересекающая отрезок AD в точке E. Найдите площадь треугольника DEC.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|