ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите формулу Эйлера: O1O22 = R2-2rR , где O1 , O2 — центры соответственно вписанной и описанной окружностей треугольника, r , R — радиусы этих окружностей. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]
Докажите, что точки, соответствующие комплексным числам a, b, c,
лежат на одной прямой тогда и только тогда, когда число
Задача Паппа. III в. н.э.}На отрезке AB взята точка
C и на отрезках AB , BC , CA как на диаметрах построены
соответственно полуокружности α , β , γ по одну сторону от
AC . В криволинейный треугольник, образованный этими
полуокружностями, вписана окружность δ1 , в криволинейный
треугольник, образованный полуокружностями α , β и
окружностью δ1 , вписана окружность δ2 и т.д.
(окружность δn вписана в криволинейный треугольник,
образованный полуокружностями α , β и окружностью
δn-1 , n=2,3, .. ). Пусть rn — радиус окружности
δn , dn — расстояние от центра окружности δn
до прямой AB . Докажите, что
На отрезке AC взята точка B и на отрезках AB, BC, CA как на диаметрах построены полуокружности S1, S2, S3 по одну сторону от AC.
Докажите формулу Эйлера: O1O22 = R2-2rR , где O1 , O2 — центры соответственно вписанной и описанной окружностей треугольника, r , R — радиусы этих окружностей.
Даны четыре окружности, каждая из которых касается внешним образом двух из трёх остальных. Докажите, что через точки касания можно провести окружность.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке