Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.

Вниз   Решение


На плоскости даны три попарно пересекающиеся окружности, центры которых не лежат на одной прямой.
Докажите, что прямые, содержащие три общие хорды каждой пары этих окружностей пересекаются в одной точке.

ВверхВниз   Решение


На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.

ВверхВниз   Решение


Выпуклый многогранник с вершинами в серединах ребер некоторого куба называется кубооктаэдром. В сечении кубооктаэдра плоскостью получился правильный многоугольник. Какое наибольшее число сторон он может иметь?

ВверхВниз   Решение


Две окружности радиусов 3 и 4, расстояние между центрами которых равно 5, пересекаются в точках A и B. Через точку B проведена прямая, пересекающая окружности в точках C и D, причём CD = 8 и точка B лежит между точками C и D. Найдите площадь треугольника ACD.

ВверхВниз   Решение


В равнобедренный прямоугольный треугольник вписан прямоугольник так, что две его вершины находятся на гипотенузе, а две другие — на катетах. Найдите стороны прямоугольника, если известно, что они относятся как 5:2, а гипотенуза треугольника равна 45.

ВверхВниз   Решение


Некоторая прямая пересекает стороны A1A2, A2A3, ..., AnA1 (или их продолжения) многоугольника A1A2...An в точках M1, M2, ..., Mn соответственно.
Докажите, что  

ВверхВниз   Решение


Угол при вершине A ромба ABCD равен 20°. Точки M и N – основания перпендикуляров, опущенных из вершины B на стороны AD и CD.
Найдите углы треугольника BMN.

ВверхВниз   Решение


Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.

ВверхВниз   Решение


Можно ли квадратный лист бумаги размером 2*2 сложить так, чтобы его можно было разрезать на 4 квадрата 1*1 одним взмахом ножницами?

ВверхВниз   Решение


Даны двадцать карточек. Каждая из цифр от нуля до девяти включительно написана на двух из этих карточек (на каждой карточке – только одна цифра). Можно ли расположить эти карточки в ряд так, чтобы нули стояли рядом, между единицами лежала ровно одна карточка, между двойками – две, и так далее до девяток, между которыми должно быть девять карточек?

ВверхВниз   Решение


На сторонах AD и CD параллелограмма ABCD взяты точки M и N так, что  MN || AC.  Докажите, что  SABM = SCBN.

ВверхВниз   Решение


В треугольнике ABC на стороне AC взята точка K, причём  AK = 1,  KC = 3,  а на стороне AB взята точка L, причём  AL : LB = 2 : 3.  Пусть Q – точка пересечения прямых BK и CL. Площадь треугольника AQC равна 1. Найдите высоту треугольника ABC, опущенную из вершины B.

ВверхВниз   Решение


Номер автомашины состоит из трёх букв русского алфавита (используется 30 букв) и трёх цифр: сначала идет буква, затем три цифры, а затем еще две буквы. Сколько существует различных номеров автомашин?

ВверхВниз   Решение


В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 501]      



Задача 66124

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7

Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.

Прислать комментарий     Решение

Задача 116458

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенство треугольника (прочее) ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

На плоскости дан квадрат и точка Р. Могут ли расстояния от точки Р до вершин квадрата оказаться равными 1, 1, 2 и 3?

Прислать комментарий     Решение

Задача 52531

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Диаметр, хорды и секущие ]
Сложность: 3
Классы: 8,9

В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

Прислать комментарий     Решение


Задача 54420

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC расположен прямоугольник ADKM так, что его сторона AD лежит на катете AB, сторона AM - на катете AC, а вершина K - на гипотенузе BC. Катет AB равен 5, а катет AC равен 12. Найдите стороны прямоугольника ADKM, если его площадь равна 40/3, а диагональ меньше 8.

Прислать комментарий     Решение


Задача 35477

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 9,10

На плоскости нарисованы два квадрата - ABCD и KLMN (их вершины перечислены против часовой стрелки). Докажите, что середины отрезков AK, BL, CM, DN также являются вершинами квадрата.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .