Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите равенство:

arctg $\displaystyle {\textstyle\frac{1}{3}}$ + arctg $\displaystyle {\textstyle\frac{1}{5}}$ + arctg $\displaystyle {\textstyle\frac{1}{7}}$ + arctg $\displaystyle {\textstyle\frac{1}{8}}$ = $\displaystyle {\frac{\pi}{4}}$.


Вниз   Решение


Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует медиана с этой стороной.

ВверхВниз   Решение


Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если  AB = BC = 2,  ∠B = 2 arcsin ,  а радиус окружности равен 1.

ВверхВниз   Решение


Докажите, что число 10...050...01 (в каждой из двух групп по 100 нулей) не является кубом целого числа.

ВверхВниз   Решение


На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом?

ВверхВниз   Решение


Известно, что уравнение  x4 + ax³ + 2x² + bx + 1 = 0  имеет действительный корень. Докажите неравенство  a² + b² ≥ 8.

ВверхВниз   Решение


Что больше:     или  

ВверхВниз   Решение


В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω1 треугольников AED и BFC, вторично пересекают окружность ω в точках E1 и F1. Докажите, что прямые EF и E1F1 параллельны.

ВверхВниз   Решение


В равнобедренном треугольнике с боковой стороной, равной b, проведены биссектрисы углов при основании. Отрезок прямой между точками пересечения биссектрис с боковыми сторонами равен m. Найдите основание треугольника.

ВверхВниз   Решение


В окружность с центром O вписана трапеция ABCD  (BC || AD).  В этой же окружности проведены диаметр CE и хорда BE, пересекающая AD в точке F. Точка H – основание перпендикуляра, опущенного из точки F на CE, S – середина отрезка EO, M – середина BD. Известно, что радиус окружности равен R, а  CH = 9R/8.  Найдите SM.

Вверх   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 401]      



Задача 35721

Темы:   [ Вспомогательная окружность ]
[ Неравенства с углами ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Четырехугольник (неравенства) ]
Сложность: 3+
Классы: 8,9

Докажите, что если в четырехугольнике два противоположные угла тупые, то диагональ, соединяющая вершины этих углов, меньше другой диагонали.
Прислать комментарий     Решение


Задача 53024

Темы:   [ Средняя линия треугольника ]
[ Проекции оснований, сторон или вершин трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

В окружность с центром O вписана трапеция ABCD  (BC || AD).  В этой же окружности проведены диаметр CE и хорда BE, пересекающая AD в точке F. Точка H – основание перпендикуляра, опущенного из точки F на CE, S – середина отрезка EO, M – середина BD. Известно, что радиус окружности равен R, а  CH = 9R/8.  Найдите SM.

Прислать комментарий     Решение

Задача 53025

Темы:   [ Средняя линия треугольника ]
[ Проекции оснований, сторон или вершин трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

В окружности с центром O проведены параллельные хорды PQ и RS, диаметр SE и хорда RE. Хорда RE пересекает хорду PQ в точке F, из точки F опущен перпендикуляр FH на SE. Известно, что радиус окружности равен r, а  EH = 3r/8.  Найдите расстояние от середины отрезка EO до середины хорды RQ.

Прислать комментарий     Решение

Задача 53112

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

Дан прямоугольный треугольник ABC с катетами  AC = 3  и  BC = 4.  Через точку C проведена прямая, лежащая вне треугольника и образующая с катетами углы, равные 45°. Найдите радиус окружности, проходящей через точки A, B и касающейся этой прямой.

Прислать комментарий     Решение

Задача 66007

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
[ Хорды и секущие (прочее) ]
[ Вписанные и описанные окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4-
Классы: 9,10,11

В треугольнике АВС проведены медиана АМ, биссектриса AL и высота AH.
Найдите радиус описанной окружности Ω треугольника АВС, если  AL = t,  AH = h  и L – середина отрезка MH.

Прислать комментарий     Решение

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .