ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи При каких p и q уравнению x² + px + q = 0 удовлетворяют два различных числа 2p и p + q?
Пусть $D$ – основание внешней биссектрисы угла $B$ треугольника $ABC$, в котором $AB > BC$. Сторона $AC$ касается вписанной и вневписанной окружностей в точках $K$ и $K_1$ соответственно, точки $I$ и $I_1$ – центры этих окружностей. Прямая $BK$ пересекает $DI_1$ в точке $X$, а $BK_1$ пересекает $DI$ в точке $Y$. Докажите, что $XY \perp AC$. Плоскость раскрашена в три цвета. Докажите, что
найдутся две точки одного цвета, расстояние между которыми равно 1.
Если при любом положительном p все корни уравнения ax² + bx + c + p = 0 действительны и положительны, то коэффициент a равен нулю. Докажите. После ввода в строй третьего транспортного кольца на нем запланировали установить ровно 1998 светофоров. Каждую минуту они одновременно меняют цвет по следующему правилу: Каждый светофор меняет цвет в зависимости от цвета двух соседних (справа и слева), причем 1) если два соседних светофора горели одним цветом, то светофор между ними загорается этим же цветом. 2) если два соседних светофора горели разными цветами, то светофор между ними загорается третьим цветом. В начальный момент все светофоры кроме одного были зеленые, а один - красный. Оппоненты Лужкова заявили, что через какое-то время все светофоры будут гореть желтым цветом. Правы ли они? На клетчатой бумаге даны произвольные n клеток.
Докажите, что из них можно выбрать не менее n/4 клеток,
не имеющих общих точек.
Из конца A диаметра AC окружности опущен перпендикуляр AP на касательную, проведённую через лежащую на окружности точку B, отличную от A и C. Докажите, что AB – биссектриса угла PAC. При каких a и b многочлен P(x) = (a + b)x5 + abx² + 1 делится на x² – 3x + 2? Прямая, проведённая через вершину A треугольника ABC
перпендикулярно его медиане BD, делит эту медиану пополам. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что QM ⊥ AC и PM ⊥ AB. Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что BH = CX.
Медиана AM треугольника ABC перпендикулярна его биссектрисе BK. Найдите AB, если BC = 12.
Прямая, проведённая через вершину A треугольника ABC
перпендикулярно его медиане BD, делит эту медиану пополам.
Два угла треугольника равны 10° и 70°. Найдите угол между высотой и биссектрисой, проведёнными из вершины третьего угла треугольника.
В треугольнике ABC биссектриса, проведённая из вершины A, высота, проведённая из вершины B, и серединный перпендикуляр к стороне AB пересекаются в одной точке. Найдите угол при вершине A.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке