Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?

Вниз   Решение


В равносторонний треугольник ABC вписан прямоугольник PQRS так, что основание прямоугольника RS лежит на стороне BC, а вершины P и Q соответственно на сторонах AB и AC. В каком отношении точка Q должна делить сторону AC, чтобы площадь прямоугольника PQRS составляла $ {\frac{45}{98}}$ площади треугольника ABC?

ВверхВниз   Решение


Докажите, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна отрезку, соединяющему середины катетов.

ВверхВниз   Решение


В прямоугольном треугольнике биссектриса острого угла делит катет на отрезки m и n  (m > n).  Найдите другой катет и гипотенузу.

ВверхВниз   Решение


Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число?

ВверхВниз   Решение


Докажите, что при a, b, c имеет место неравенство  

ВверхВниз   Решение


На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

ВверхВниз   Решение


Для каких n возможны равенства:   a)  φ(n) = n – 1;   б)  φ(2n) = 2φ(n);   в)  φ(nk) = nk–1φ(n)?

ВверхВниз   Решение


Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1442]      



Задача 54143

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые DM и BN пересекаются на диагонали AC.

Прислать комментарий     Решение

Задача 54253

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике биссектриса острого угла делит катет на отрезки m и n  (m > n).  Найдите другой катет и гипотенузу.

Прислать комментарий     Решение

Задача 54254

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC боковая сторона AB равна 10, основание AC равно 12. Биссектрисы углов A и C пересекаются в точке D. Найдите BD.

Прислать комментарий     Решение

Задача 54260

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18.

Прислать комментарий     Решение

Задача 54289

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3
Классы: 8,9

Точка на гипотенузе, равноудалённая от обоих катетов, делит гипотенузу на отрезки длиной 30 и 40. Найдите катеты треугольника.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1442]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .