ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?
В равносторонний треугольник ABC вписан прямоугольник PQRS
так, что основание прямоугольника RS лежит на стороне BC, а
вершины P и Q соответственно на сторонах AB и AC. В каком
отношении точка Q должна делить сторону AC, чтобы площадь
прямоугольника PQRS составляла
Докажите, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна отрезку, соединяющему середины катетов. В прямоугольном треугольнике биссектриса острого угла делит катет на отрезки m и n (m > n). Найдите другой катет и гипотенузу. Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число? Докажите, что при a, b, c имеет место неравенство На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что 1/PQ = 1/PB + 1/PC. Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ. Для каких n возможны равенства: a) φ(n) = n – 1; б) φ(2n) = 2φ(n); в) φ(nk) = nk–1φ(n)? Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1442]
Точки M и N – середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые DM и BN пересекаются на диагонали AC.
В прямоугольном треугольнике биссектриса острого угла делит катет на отрезки m и n (m > n). Найдите другой катет и гипотенузу.
В равнобедренном треугольнике ABC боковая сторона AB равна 10, основание AC равно 12. Биссектрисы углов A и C пересекаются в точке D. Найдите BD.
Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18.
Точка на гипотенузе, равноудалённая от обоих катетов, делит гипотенузу на отрезки длиной 30 и 40. Найдите катеты треугольника.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1442]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке