Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Хорда пересекает диаметр под углом в 30o и делит его на два отрезка, равные 2 и 6. Найдите расстояние от центра окружности до этой хорды.

Вниз   Решение


Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)

ВверхВниз   Решение


Решите уравнение  

ВверхВниз   Решение


На сфере, радиус которой равен 2, расположены три окружности радиуса 1, каждая из которых касается двух других. Найдите радиус окружности меньшей, чем данная, которая также расположена на данной сфере и касается каждой из данных окружностей.

ВверхВниз   Решение


Дана сфера радиуса 1. На ней расположены равные окружности γ0, γ1, ..., γn радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ1, ..., γn; кроме того, касаются друг друга окружности γ1 и γ2, γ2 и γ3, ..., γn и γ1. При каких n это возможно? Вычислите соответствующий радиус r.

ВверхВниз   Решение


В правильной треугольной призме BCDB1C1D1 ( BB1 || CC1 || DD1 ) известно, что BB1:BC=5:3 . На боковых рёбрах BB1 , CC1 и DD1 взяты точки L , M и N соответственно, причём BL:LB1=3:2 , CM:MC1=2:3 , DN:ND1=1:4 . Найдите двугранный угол между плоскостями LMN и BCD .

ВверхВниз   Решение


Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть  a = + ... +   и  b = + ... + .
Может ли оказаться, что  |a| > |b| ?

ВверхВниз   Решение


На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на этой планете?

ВверхВниз   Решение


Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
  а) никакая цифра не повторяется более одного раза;
  б) повторения цифр допустимы;
  в) числа должны быть нечётными и повторений цифр быть не должно?

ВверхВниз   Решение


Найдите сумму коэффициентов при чётных степенях в многочлене, который получается из выражения  f(x) = (x³ – x + 1)100  в результате раскрытия скобок и приведения подобных слагаемых.

ВверхВниз   Решение


Угол при вершине осевого сечения конуса равен 60o . Внутри конуса расположены три сферы радиуса 1. Каждая сфера касается двух других, основания конуса и его боковой поверхности. Найдите радиус основания конуса.

ВверхВниз   Решение


Пусть O - центр круга, описанного около треугольника ABC. Найдите угол OAC, если: а) $ \angle$B = 50o; б) $ \angle$B = 126o.

ВверхВниз   Решение


На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

ВверхВниз   Решение


Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из A в A за n прыжков?

ВверхВниз   Решение


В треугольнике ABC сторона AB равна стороне BC. Пусть D – основание перпендикуляра, опущенного из B на сторону AC,  E – точка пересечения биссектрисы угла A со стороной BC. Через точку E проведён перпендикуляр к AE до пересечения с продолжением стороны AC в точке F (C между F и D). Известно, что  AD = m,  FC = m/4.  Найдите площадь треугольника ABC.

ВверхВниз   Решение


На ребре $AD$ и диагонали $A_1C$ параллелепипеда $ABCDA_1B_1C_1D_1$ взяты соответственно точки $M$ и $N$, причём прямая $MN$ параллельна плоскости $BDC_1$ и $AM:AD = 1:5$. Найдите отношение $CN:CA_1$.

ВверхВниз   Решение


Автобус, едущий по маршруту длиной 100 км, снабжен компьютером, показывающим прогноз времени, остающегося до прибытия в конечный пункт. Это время рассчитывается исходя из предположения, что средняя скорость автобуса на оставшемся участке маршрута будет такой же, как и на уже пройденной его части. Спустя 40 минут после начала движения ожидаемое время до прибытия составляло 1 час и оставалось таким же ещё в течение пяти часов. Могло ли такое быть? Если да, то сколько километров проехал автобус к окончанию этих пяти часов?

ВверхВниз   Решение


С помощью циркуля и линейки по данным отрезкам a, h и m постройте треугольник ABC со стороной BC = a, высотой BH = h и медианой а) BM = m; б) AM = m.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 159]      



Задача 55480

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На отрезке AC взята точка B. На AB и AC как на диаметрах построены окружности. К отрезку AC в точке B проведён перпендикуляр BD до пересечения с большей окружностью в точке D. Из точки C проведена касательная CK к меньшей окружности. Докажите, что CD = CK.

Прислать комментарий     Решение


Задача 55506

Темы:   [ Окружность, вписанная в угол ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

К данной окружности проведены две параллельные касательные и третья касательная, пересекающая их. Докажите, что радиус окружности есть среднее геометрическое отрезков третьей касательной.

Прислать комментарий     Решение


Задача 55549

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Диаметр AB окружности равен 1. На нем отложен отрезок AC, равный a. Проведена также хорда AD, равная b. Из точки C восстановлен перпендикуляр к AB, пересекающий хорду AD в точке E, а из точки D опущен перпендикуляр DF на AB (см. рисунок). Оказалось, что AE = AF. Докажите, что a = b3.

Прислать комментарий     Решение


Задача 52702

Темы:   [ Прямые, касающиеся окружностей ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Окружность радиуса 2 касается внешним образом другой окружности в точке A. Общая касательная к обеим окружностям, проведённая через точку A, пересекается с другой их общей касательной в точке B. Найдите радиус второй окружности, если AB = 4.

Прислать комментарий     Решение


Задача 54936

Темы:   [ Построение треугольников по различным элементам ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки по данным отрезкам a, h и m постройте треугольник ABC со стороной BC = a, высотой BH = h и медианой а) BM = m; б) AM = m.

Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .