Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В каких пределах может изменяться плоский угол трёхгранного угла, если два других плоских угла соответственно равны: а) 70o и 100o ; б) 130o и 150o ?

Вниз   Решение


Продолжения сторон AB и CD вписанного четырехугольника ABCD пересекаются в точке P, а продолжения сторон BC и AD — в точке Q. Докажите, что точки пересечения биссектрис углов AQB и BPC со сторонами четырехугольника являются вершинами ромба.

ВверхВниз   Решение


Диагонали трапеции ABCD с основаниями AD и BC пересекаются в точке O; точки B' и C' симметричны вершинам B и C относительно биссектрисы угла BOC. Докажите, что  $ \angle$C'AC = $ \angle$B'DB.

ВверхВниз   Решение


Верно ли, что в сечении любого трёхгранного угла плоскостью можно получит правильный треугольник?

ВверхВниз   Решение


Около сферы описан пространственный четырёхугольник. Докажите, что четыре точки касания лежат в одной плоскости.

ВверхВниз   Решение


Найдите геометрическое место точек, расстояния от каждой из которых до двух данных точек относятся как m : n.

ВверхВниз   Решение


Дана замкнутая пространственная ломаная. Некоторая плоскость пересекает все её звенья: A1A2 в точке B1, A2A3 — в точке B2, ..., AnA1 -- в точке Bn. Докажите, что

$\displaystyle {\frac{A_1B_1}{B_1A_2}}$$\displaystyle {\frac{A_2B_2}{B_2A_3}}$...$\displaystyle {\frac{A_nB_n}{B_nA_1}}$ = 1.

ВверхВниз   Решение


Точка D расположена на стороне BC треугольника ABC. Докажите, что AB2 . DC + AC2 . BD - AD2 . BC = BC . DC . BD.

ВверхВниз   Решение


Существует ли такое x, что    ?

ВверхВниз   Решение


По случаю празднования дня Смеха Джон и Иван приготовили себе по коктейлю. Джон смешал виски с ликёром, а Иван – водку с пивом. Известно, что виски крепче водки, а ликёр крепче пива. Можно ли утверждать, что Джон пьёт более крепкий коктейль?

ВверхВниз   Решение


Докажите, что середины сторон произвольного четырёхугольника – вершины параллелограмма.
Для каких четырёхугольников этот параллелограмм является прямоугольником, для каких – ромбом, для каких – квадратом?

ВверхВниз   Решение


Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины.

ВверхВниз   Решение


Решите задачу 13.44, используя свойства центра масс.

ВверхВниз   Решение


Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 345]      



Задача 32026

Темы:   [ Симметрия помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей?

Прислать комментарий     Решение

Задача 55555

Темы:   [ Симметрия помогает решить задачу ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.

Прислать комментарий     Решение

Задача 78287

Темы:   [ Симметрия помогает решить задачу ]
[ Правильные многоугольники ]
[ Композиции симметрий ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3
Классы: 8,9,10

У края биллиарда, имеющего форму правильного 2n-угольника, стоит шар. Как надо пустить шар от борта, чтобы он, отразившись последовательно от всех бортов, вернулся в ту же точку? (При отражении углы падения и отражения равны.) Доказать, что при этом длина пути шара не зависит от выбора начальной точки.

Прислать комментарий     Решение

Задача 97801

Тема:   [ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Бильярд имеет форму прямоугольного треугольника, один из острых углов которого равен 30°. Из этого угла по медиане противоположной стороны выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.

Прислать комментарий     Решение

Задача 108627

Темы:   [ Симметрия помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3
Классы: 8,9

Из точек A и B , лежащих на разных сторонах угла, восставлены перпендикуляры к сторонам, пересекающие биссектрису угла в точках C и D . Докажите, что середина отрезка CD равноудалена от точек A и B .
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 345]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .