Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Одна из боковых сторон трапеции равна сумме оснований.
Докажите, что биссектрисы углов при этой стороне пересекаются на другой боковой стороне.

Вниз   Решение


Все натуральные числа выписали в ряд в некотором порядке (каждое число по одному разу). Обязательно ли найдутся несколько (больше одного) чисел, выписанных подряд (начиная с какого-то места), сумма которых будет простым числом?

ВверхВниз   Решение


Точка $M$ – середина большей боковой стороны $CD$ прямоугольной трапеции $ABCD$. Описанные около треугольников $BCM$ и $AMD$ окружности $\omega_1$ и $\omega_2$ пересекаются в точке $E$. Пусть $ED$ пересекает $\omega_1$ в точке $F$, а $FB$ пересекает $AD$ в $G$. Докажите, что $GM$ – биссектриса угла $BGD$.

ВверхВниз   Решение


Докажите, что биссектрисы углов выпуклого четырехугольника образуют вписанный четырехугольник.

ВверхВниз   Решение


Вершина A остроугольного треугольника ABC соединена отрезком с центром O описанной окружности. Из вершины A проведена высота AH. Докажите, что  $ \angle$BAH = $ \angle$OAC.

ВверхВниз   Решение


Две окружности имеют радиусы R1 и R2, а расстояние между их центрами равно d. Докажите, что эти окружности ортогональны тогда и только тогда, когда  d2 = R12 + R22.

ВверхВниз   Решение


Две окружности S1 и S2 с центрами O1 и O2 касаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке A1 и S2 в точке A2. Докажите, что  O1A1 || O2A2.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 2966]      



Задача 56593

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 2
Классы: 8,9

На окружности взяты точки A, B, C и D. Прямые AB и CD пересекаются в точке M. Докажите, что  AC . AD/AM = BC . BD/BM.
Прислать комментарий     Решение


Задача 56633

Тема:   [ Вписанный угол (прочее) ]
Сложность: 2
Классы: 8,9

В треугольнике ABC проведена высота AHO — центр описанной окружности. Докажите, что  $ \angle$OAH = |$ \angle$B - $ \angle$C|.
Прислать комментарий     Решение


Задача 56672

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности касаются в точке A. К ним проведена общая (внешняя) касательная, касающаяся окружностей в точках C и B. Докажите, что  $ \angle$CAB = 90o.
Прислать комментарий     Решение


Задача 56673

Тема:   [ Касающиеся окружности ]
Сложность: 2
Классы: 8

Две окружности S1 и S2 с центрами O1 и O2 касаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке A1 и S2 в точке A2. Докажите, что  O1A1 || O2A2.
Прислать комментарий     Решение


Задача 56684

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 2
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Докажите, что если из точки M отрезок AO виден под углом  90o, то отрезки OB и OC видны из нее под равными углами.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 2966]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .