Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы.

Вниз   Решение


Найти наименьшее n такое, что любой выпуклый 100-угольник можно получить в виде пересечения n треугольников. Докажите, что для меньших n это можно сделать не с любым выпуклым 100-угольником.

ВверхВниз   Решение


В выпуклом многоугольнике из каждой вершины опущены перпендикуляры на все не смежные с ней стороны. Может ли оказаться так, что основание каждого перпендикуляра попало на продолжение стороны, а не на саму сторону?

ВверхВниз   Решение


На перпендикуляре к плоскости прямоугольника ABCD , проходящем через точку A , взята точка P , отличная от A . Докажите, что а) плоскость APB перпендикулярна плоскости APD ; б) плоскость APB перпендикулярна плоскости BPC ; в) плоскость APD перпендикулярна плоскости DPC .

ВверхВниз   Решение


Точка D лежит на стороне AB треугольника ABC. Найдите CD, если известно, что BC = 37, AC = 15, AB = 44, AD = 14.

ВверхВниз   Решение


Даны две непересекающиеся окружности. Найдите геометрическое место точек центров окружностей, делящих пополам данные окружности (т. е. пересекающих их в диаметрально противоположных точках).

ВверхВниз   Решение


На доске нарисовали выпуклый многоугольник. В нём провели несколько диагоналей, не пересекающихся внутри него, так что он оказался разбит на треугольники. Затем возле каждой вершины записали число треугольников, примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по оставшимся возле вершин числам восстановить стёртые диагонали?

ВверхВниз   Решение


Назовем выпуклый семиугольник особым, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.

ВверхВниз   Решение


Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.

ВверхВниз   Решение


Докажите, что любой выпуклый многоугольник можно разрезать двумя взаимно перпендикулярными прямыми на четыре фигуры равной площади.

ВверхВниз   Решение


Высота пирамиды ABCD , опущенная из вершины D , проходит через точку пересечения высот треугольника ABC . Кроме того, известно, что DB = b , DC = c , BDC = 90o . Найдите отношение площадей граней ADB и ADC .

ВверхВниз   Решение


а) Докажите, что пучок окружностей полностью задаётся парой окружностей.
б) Докажите, что пучок окружностей полностью задаётся одной окружностью и радикальной осью.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 125]      



Задача 56726

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Решите задачу 1.67, используя свойства радикальной оси.
Прислать комментарий     Решение


Задача 56727

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Внутри выпуклого многоугольника расположено несколько попарно непересекающихся кругов различных радиусов. Докажите, что многоугольник можно разрезать на маленькие многоугольники так, чтобы все они были выпуклыми и в каждом из них содержался ровно один из данных кругов.
Прислать комментарий     Решение


Задача 56732

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

а) Докажите, что пучок окружностей полностью задаётся парой окружностей.
б) Докажите, что пучок окружностей полностью задаётся одной окружностью и радикальной осью.
Прислать комментарий     Решение


Задача 56733

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Пусть f (x, y) = x2 + y2 + a1x + b1y + c1 и g(x, y) = x2 + y2 + a2x + b2y + c2. Докажите, что для любого вещественного $ \lambda$$ \ne$1 уравнение f - $ \lambda$g = 0 задаёт окружность из пучка окружностей, порождённого окружностями f = 0 и g = 0.
Прислать комментарий     Решение


Задача 56734

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что любая окружность пучка либо пересекает радикальную ось в двух фиксированных точках (эллиптический пучок), либо касается радикальной оси в фиксированной точке (параболический пучок), либо не пересекает радикальную ось (гиперболический пучок).

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .