ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники  A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём  α + β + γ = 60°.  Прямые BC1 и B1C пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 143]      



Задача 66661

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Преобразования плоскости (прочее) ]
[ Теорема синусов ]
Сложность: 5
Классы: 10,11

Автор: Зимин А.

Дан неравнобедренный треугольник $ABC$. Вписанная окружность касается его сторон $AB$, $AC$ и $BC$ в точках $D$, $E$, $F$ соответственно. Вневписанная окружность касается стороны $BC$ в точке $N$. Пусть $T$ – ближайшая к $N$ точка пересечения прямой $AN$ с вписанной окружностью, а $K$ – точка пересечения прямых $DE$ и $FT$. Докажите, что $AK||BC$.
Прислать комментарий     Решение


Задача 66812

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Точка Нагеля. Прямая Нагеля ]
Сложность: 5
Классы: 9,10,11

Докажите, что сумма двух нагелиан больше полупериметра треугольника.
Прислать комментарий     Решение


Задача 66815

Темы:   [ ГМТ - прямая или отрезок ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
Сложность: 5
Классы: 9,10,11

Автор: Tran Quang Hung

Пусть $P$ – произвольная точка на стороне $BC$ треугольника $ABC$, $K$ – центр вписанной окружности треугольника $PAB$, а $F$ – точка касания вписанной окружности треугольника $PAC$ со стороной $BC$. Точка $G$ на $CK$ такова, что $FG\parallel PK$. Найдите геометрическое место точек $G$.
Прислать комментарий     Решение


Задача 111921

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вневписанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 5+
Классы: 8,9,10

Стороны BC и AC треугольника ABC касаются соответствующих вневписанных окружностей в точках A1 , B1 . Пусть A2 , B2 — ортоцентры треугольников CAA1 и CBB1 . Докажите, что прямая A2B2 перпендикулярна биссектрисе угла C .
Прислать комментарий     Решение


Задача 53463

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 8,9

Докажите, что биссектрисы двух внешних углов и третьего внутреннего угла треугольника пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 143]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .