Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

На дуге  A1A2n + 1 описанной окружности S правильного (2n + 1)-угольника  A1...A2n + 1 взята точка A. Докажите, что:
а)  d1 + d3 + ... + d2n + 1 = d2 + d4 + ... + d2n, где di = AAi;
б)  l1 + ... + l2n + 1 = l2 + ... + l2n, где li — длина касательной, проведенной из точки A к окружности радиуса r, касающейся S в точке Ai (все касания одновременно внутренние или внешние).

Вниз   Решение


Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.

ВверхВниз   Решение


На сторонах OA и OB четверти AOB круга построены как на диаметрах полуокружности ACO и OCB, пересекающиеся в точке C. Докажите, что:

1) прямая OC делит угол AOB пополам;

2) точки A, C и B лежат на одной прямой;

3) дуги AC, CO и CB равны между собой.

ВверхВниз   Решение


Окружность касается сторон AB и AD прямоугольника ABCD и пересекает сторону DC в единственной точке F и сторону BC в единственной точке E.
Найдите площадь трапеции AFCB, если  AB = 32,  AD = 40  и  BE = 1.

ВверхВниз   Решение


Докажите, что две касающиеся окружности гомотетичны относительно их точки касания.

ВверхВниз   Решение


Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.

ВверхВниз   Решение


В треугольной пирамиде SABC известны плоские углы при вершине S : BSC = 90o , ASC = ASB = 60o . Вершины A , S и середины рёбер SB , SC , AB , AC лежат на поверхности шара радиуса 3. Докажите, что ребро SA является диаметром этого шара, и найдите объём пирамиды.

ВверхВниз   Решение


С помощью циркуля и линейки постройте четырёхугольник ABCD по четырём углам и сторонам AB = a и CD = b.

ВверхВниз   Решение


Основание пирамиды Хеопса – квадрат, а её боковые грани – равные равнобедренные треугольники.
Может ли угол грани при вершине пирамиды равняться 100°?

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон AC и BC в точках B1 и A1. Докажите, что если AC > BC, то AA1 > BB1.

ВверхВниз   Решение


k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и  kn  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.

ВверхВниз   Решение


Периоды двух последовательностей – m и n – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?

ВверхВниз   Решение


Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что  EK || AB  и найдите площадь трапеции ABKE.

ВверхВниз   Решение


Окружности радиуса x и y касаются окружности радиуса R, причем расстояние между точками касания равно a. Вычислите длину следующей общей касательной к первым двум окружностям:
а) внешней, если оба касания внешние или внутренние одновременно;
б) внутренней, если одно касание внутреннее, а другое внешнее.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 57052

Тема:   [ Теорема Птолемея ]
Сложность: 5
Классы: 9

Дан параллелограмм ABCD. Окружность, проходящая через точку A, пересекает отрезки AB, AC и AD в точках P, Q и R соответственно. Докажите, что  AP . AB = AR . AD = AQ . AC.
Прислать комментарий     Решение


Задача 57053

Тема:   [ Теорема Птолемея ]
Сложность: 5
Классы: 9

На дуге  A1A2n + 1 описанной окружности S правильного (2n + 1)-угольника  A1...A2n + 1 взята точка A. Докажите, что:
а)  d1 + d3 + ... + d2n + 1 = d2 + d4 + ... + d2n, где di = AAi;
б)  l1 + ... + l2n + 1 = l2 + ... + l2n, где li — длина касательной, проведенной из точки A к окружности радиуса r, касающейся S в точке Ai (все касания одновременно внутренние или внешние).
Прислать комментарий     Решение


Задача 57054

Тема:   [ Теорема Птолемея ]
Сложность: 6
Классы: 9

Окружности радиуса x и y касаются окружности радиуса R, причем расстояние между точками касания равно a. Вычислите длину следующей общей касательной к первым двум окружностям:
а) внешней, если оба касания внешние или внутренние одновременно;
б) внутренней, если одно касание внутреннее, а другое внешнее.
Прислать комментарий     Решение


Задача 57055

 [Обобщенная теорема Птолемея]
Тема:   [ Теорема Птолемея ]
Сложность: 6
Классы: 9,10

Окружности  $ \alpha$,$ \beta$,$ \gamma$ и $ \delta$ касаются данной окружности в вершинах A, B, C и D выпуклого четырехугольника ABCD. Пусть  t$\scriptstyle \alpha$$\scriptstyle \beta$ — длина общей касательной к окружностям $ \alpha$ и $ \beta$ (внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее);  t$\scriptstyle \beta$$\scriptstyle \gamma$, t$\scriptstyle \gamma$$\scriptstyle \delta$ и т. д. определяются аналогично. Докажите, что  t$\scriptstyle \alpha$$\scriptstyle \beta$t$\scriptstyle \gamma$$\scriptstyle \delta$ + t$\scriptstyle \beta$$\scriptstyle \gamma$t$\scriptstyle \delta$$\scriptstyle \alpha$ = t$\scriptstyle \alpha$$\scriptstyle \gamma$t$\scriptstyle \beta$$\scriptstyle \delta$ (обобщенная теорема Птолемея).
Прислать комментарий     Решение


Задача 57248

 [Задача Брахмагупты]
Темы:   [ Теорема Птолемея ]
[ Четырехугольники (построения) ]
Сложность: 6
Классы: 8,9

Постройте вписанный четырехугольник по четырем сторонам (Брахмагупта).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .