ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Стороны правильного шестиугольника раскрашены через одну в красный и синий цвета. Докажите, что сумма расстояний от точки, лежащей внутри шестиугольника, до прямых, содержащих красные стороны, равна сумме расстояний от этой точки до прямых, содержащих синие стороны.

Вниз   Решение


Найдите точку минимума функции y = (x+11)ex-11 .

ВверхВниз   Решение


Докажите тождество  

ВверхВниз   Решение


Из середины M стороны AC треугольника ABC опущены перпендикуляры MD и ME на стороны AB и BC соответственно. Около треугольников ABE и BCD описаны окружности. Докажите, что расстояние между центрами этих окружностей равно AC/4.

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:   (a + b + c + d)² ≤ 4(a² + b² + c² + d²).

ВверхВниз   Решение


В бесконечной последовательности  (xn)  первый член x1 – рациональное число, большее 1, и  xn+1 = xn + 1/[xn]  при всех натуральных n.
Докажите, что в этой последовательности есть целое число.

ВверхВниз   Решение


Окружность проходит через соседние вершины M и N прямоугольника MNPQ. Длина касательной, проведённой из точки Q к окружности, равна 1,  PQ = 2.  Найдите все возможные значения, которые может принимать площадь прямоугольника MNPQ, если диаметр окружности равен .

ВверхВниз   Решение


Автор: Охитин С.

Известно, что четыре синих треугольника на рисунке 1 равновелики.

а) Докажите что три красных четырёхугольника на этом рисунке также равновелики.

б) Найдите площадь одного четырёхугольника, если площадь одного синего треугольника равна 1.

ВверхВниз   Решение


Пусть M – середина стороны BC параллелограмма ABCD. В каком отношении отрезок AM делит диагональ BD?

ВверхВниз   Решение


Опишите явный вид многочлена  f(x) = f1(x) + f2(x) + ... + fn(x),  где  fi(x) – многочлены из задачи 61050.

ВверхВниз   Решение


В пространстве дано несколько прямых, причём каждые две из них пересекаются.
Докажите, что либо все прямые проходят через одну точку, либо все прямые лежат в одной плоскости.

ВверхВниз   Решение


В турнире по игре в "крестики – нолики", проведённом по системе "проиграл – выбыл", участвовали 18 школьников. Каждый день играли одну партию, участников которой выбирали жребием из ещё не выбывших школьников. Каждый из шестерых школьников утверждает, что сыграл ровно четыре партии. Не ошибается ли кто-то из них?

ВверхВниз   Решение


В классе больше 32, но меньше 40 человек. Каждый мальчик дружит с тремя девочками, а каждая девочка – с пятью мальчиками.
Сколько человек в классе?

ВверхВниз   Решение


Постройте образ точки A при инверсии относительно окружности S с центром O.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 113]      



Задача 58321

Темы:   [ Свойства инверсии ]
[ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 9,10

Докажите, что касающиеся окружности (окружность и прямая) переходят при инверсии в касающиеся окружности или в окружность и прямую, или в пару параллельных прямых.
Прислать комментарий     Решение


Задача 58326

Темы:   [ Построение окружностей ]
[ Свойства инверсии ]
Сложность: 4
Классы: 9,10

Постройте образ точки A при инверсии относительно окружности S с центром O.
Прислать комментарий     Решение


Задача 58339

Темы:   [ Теорема Мора-Маскерони ]
[ Построения одним циркулем ]
Сложность: 4
Классы: 9,10,11

С помощью одного циркуля
  а) постройте точки пересечения данной окружности S и прямой, проходящей через данные точки A и B;
  б) постройте точку пересечения прямых A1B1 и A2B2, где A1, B1, A2 и B2 – данные точки.

Прислать комментарий     Решение

Задача 58342

Тема:   [ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10

Докажите, что инверсия с центром в вершине A равнобедренного треугольника ABC (AB = AC) и степенью AB2 переводит основание BC треугольника в дугу BC описанной окружности.
Прислать комментарий     Решение


Задача 58349

Тема:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
Сложность: 4
Классы: 9,10

Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.).


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .